Estimates for measures of lower dimensional sections of convex bodies

被引:14
作者
Chasapis, Giorgos [1 ]
Giannopoulos, Apostolos [1 ]
Liakopoulos, Dimitris-Marios [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Math, Athens 15784, Greece
关键词
Convex bodies; Isotropic position; Slicing problem; Busemann-Petty problem; Blaschke-Petkantschin formula; Random simplices; Dual affine quermassintegrals; BUSEMANN-PETTY PROBLEM; DUAL AFFINE QUERMASSINTEGRALS; SLICING INEQUALITIES;
D O I
10.1016/j.aim.2016.10.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an alternative approach to some results of Koldobsky on measures of sections of symmetric convex bodies, which allows us to extend them to the not necessarily symmetric setting. We prove that if K is a convex body in R-n with 0 is an element of int(K) and mu is a measure on R-n with a locally integrable non-negative density g on R-n, then mu(K) <= (c root n-k)(k) max(F is an element of Gn,n-k) mu(K boolean AND F) . vertical bar K vertical bar(k/n) for every 1 <= k <= n-1. Also, if mu is even and log-concave, and if K is a symmetric convex body in R-n and D is a compact subset of R-n such that mu(K boolean AND F) < mu(D boolean AND F) for all F is an element of G(n,n-k;) then mu(K) <= (ckL(n-k))(k) mu(D), where L-s is the maximal isotropic constant of a convex body in R-s. Our method employs a generalized Blaschke-Petkantschin formula and estimates for the dual affine quermassintegrals. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:880 / 904
页数:25
相关论文
共 30 条
[1]  
Artstein-Avidan S., 2015, Mathematical Surveys and Monographs, V202
[2]  
BOURGAIN J, 1991, LECT NOTES MATH, V1469, P127
[3]  
Brazitikos Silouanos, 2014, MATH SURVEYS MONOGRA, V196
[4]  
Busemann H., 1960, PAC J MATH, V10, P35
[5]   ESTIMATES FOR THE AFFINE AND DUAL AFFINE QUERMASSINTEGRALS OF CONVEX BODIES [J].
Dafnis, Nikos ;
Paouris, Grigoris .
ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (04) :1005-1021
[6]   Small ball probability estimates, ψ2-behavior and the hyperplane conjecture [J].
Dafnis, Nikos ;
Paouris, Grigoris .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (06) :1933-1964
[7]   Bounding marginal densities via affine isoperimetry [J].
Dann, Susanna ;
Paouris, Grigoris ;
Pivovarov, Peter .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 113 :140-162
[8]  
Finch SR, 2003, MATH CONSTANTS ENCY, V94
[9]   The dual Brunn-Minkowski theory for bounded borel sets: Dual affine quermassintegrals and inequalities [J].
Gardner, R. J. .
ADVANCES IN MATHEMATICS, 2007, 216 (01) :358-386
[10]   ISOPERIMETRIC-INEQUALITIES AND IDENTITIES FOR K-DIMENSIONAL CROSS-SECTIONS OF CONVEX-BODIES [J].
GRINBERG, EL .
MATHEMATISCHE ANNALEN, 1991, 291 (01) :75-86