ENDPOINT ESTIMATES FOR COMMUTATORS OF SUBLINEAR OPERATORS IN THE MORREY-TYPE SPACES

被引:0
作者
Wang, Hua [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2017年 / 11卷 / 03期
关键词
Sublinear operators; weighted Morrey spaces; generalized Morrey spaces; commutators; BMO; WEIGHTED NORM INEQUALITIES; MARCINKIEWICZ INTEGRALS; FRACTIONAL INTEGRALS; SINGULAR-INTEGRALS; RIESZ-POTENTIALS;
D O I
10.7153/jmi-2017-11-49
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let [b, T-alpha] (0 <= alpha < n) be the commutators generated by BMO(R-n) functions and a class of sublinear operators satisfying certain size conditions. The aim of this paper is to study the endpoint estimates of these commutators on the weighted Morrey spaces and the generalized Morrey spaces, under the assumptions that [b, T-alpha] (0 <= alpha < n) satisfy (weighted or unweighted) endpoint inequalities on R-n or on bounded domains. Furthermore, as applications of our main results, we will obtain, in the endpoint case, the boundedness properties of many important operators in classical harmonic analysis on the weighted Morrey and the generalized Morrey spaces.
引用
收藏
页码:607 / 639
页数:33
相关论文
共 35 条
  • [1] ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
  • [2] [Anonymous], 1985, Weighted Norm Inequalities and Related Topics
  • [3] Chiarenza F., 1987, Rend. Mat, V7, P273
  • [4] Weighted endpoint estimates for commutators of fractional integrals
    Cruz-Uribe, D.
    Fiorenza, Hartford A.
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2007, 57 (01) : 153 - 160
  • [5] Endpoint estimates and weighted norm inequalities for commutators of fractional integrals
    Cruz-Uribe, D
    Fiorenza, A
    [J]. PUBLICACIONS MATEMATIQUES, 2003, 47 (01) : 103 - 131
  • [6] Weighted weak type estimates for commutators of the Marcinkiewicz integrals
    Ding, Y
    Lu, SZ
    Zhang, P
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (01): : 83 - 95
  • [7] Higher order commutators for a class of rough operators
    Ding, Y
    Lu, SZ
    [J]. ARKIV FOR MATEMATIK, 1999, 37 (01): : 33 - 44
  • [8] DUOANDIKOETXEA J., 2000, FOURIER ANAL AM MATH
  • [9] Guliyev V., 2009, J. Inequal. Appl, DOI DOI 10.1155/2009/503948
  • [10] Boundedness of Sublinear Operators and Commutators on Generalized Morrey Spaces
    Guliyev, Vagif S.
    Aliyev, Seymur S.
    Karaman, Turhan
    Shukurov, Parviz S.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (03) : 327 - 355