An Analytical Approach to Fast Parameter Selection of Gaussian RBF Kernel for Support Vector Machine

被引:0
|
作者
Liu, Zhiliang [1 ]
Zuo, Ming J. [1 ]
Zhao, Xiaomin [3 ]
Xu, Hongbing [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech Elect & Ind Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
[3] Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2G8, Canada
基金
中国国家自然科学基金;
关键词
parameter selection; Gaussian radial basis function; class separability; support vector machine; distance similarity; FAULT-DIAGNOSIS; CLASSIFICATION; SYSTEM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Gaussian radial basis function (RBF) is a widely used kernel function in support vector machine (SVM). The kernel parameter a is crucial to maintain high performance of the Gaussian SVM. Most previous studies on this topic are based on optimization search algorithms that result in large computation load. In this paper, we propose an analytical algorithm to determine the optimal a with the principle of maximizing between-class separability and minimizing within-class separability. An attractive advantage of the proposed algorithm is that no optimization search process is required, and thus the selection process is less complex and more computationally efficient. Experimental results on seventeen real-world datasets demonstrate that the proposed algorithm is fast and robust when using it for the Gaussian SVM.
引用
收藏
页码:691 / 710
页数:20
相关论文
共 50 条
  • [21] An Estimation of the Optimal Gaussian Kernel Parameter for Support Vector Classification
    Wang, Wenjian
    Ma, Liang
    ADVANCES IN NEURAL NETWORKS - ISNN 2008, PT I, PROCEEDINGS, 2008, 5263 : 627 - 635
  • [22] Parameter Selection Algorithm for Support Vector Machine
    Wang, Shuzhou
    Meng, Bo
    2011 2ND INTERNATIONAL CONFERENCE ON CHALLENGES IN ENVIRONMENTAL SCIENCE AND COMPUTER ENGINEERING (CESCE 2011), VOL 11, PT B, 2011, 11 : 538 - 544
  • [23] Classification of nuclear receptor subfamilies with RBF kernel in support vector machine
    Cai, J
    Li, Y
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 3, PROCEEDINGS, 2005, 3498 : 680 - 685
  • [24] AN AUTOMATIC METHOD FOR SELECTING THE PARAMETER OF THE RBF KERNEL FUNCTION TO SUPPORT VECTOR MACHINES
    Li, Cheng-Hsuan
    Lin, Chin-Teng
    Kuo, Bor-Chen
    Chu, Hui-Shan
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 836 - 839
  • [25] Bayesian approach to feature selection and parameter tuning for support vector machine classifiers
    Gold, C
    Holub, A
    Sollich, P
    NEURAL NETWORKS, 2005, 18 (5-6) : 693 - 701
  • [26] Parameter investigation of support vector machine classifier with kernel functions
    Alaa Tharwat
    Knowledge and Information Systems, 2019, 61 : 1269 - 1302
  • [27] Parameter investigation of support vector machine classifier with kernel functions
    Tharwat, Alaa
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 61 (03) : 1269 - 1302
  • [28] An efficient method for tuning kernel parameter of the support vector machine
    Debnath, R
    Takahashi, H
    IEEE INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES 2004 (ISCIT 2004), PROCEEDINGS, VOLS 1 AND 2: SMART INFO-MEDIA SYSTEMS, 2004, : 1023 - 1028
  • [29] Vegetation detection approach based on gaussian kernel support vector machine in unstructured road environment
    Zhou, Zhiyu
    Yang, Ming
    Xue, Linji
    Wang, Chunxiang
    Wang, Bing
    Jiqiren/Robot, 2015, 37 (06): : 702 - 707
  • [30] Adaptive Spherical Gaussian Kernel for fast Relevance Vector Machine Regression
    Yuan, Jin
    Yu, Tao
    Wang, Kesheng
    Liu, Xuemei
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 2071 - +