Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteries

被引:65
作者
Gong, Jinqiu [1 ]
Wang, Qingsong [1 ,2 ]
Sun, Jinhua [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[2] Collaborat Innovat Ctr Urban Publ Safety, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion battery safety; Li(NixCoyMnz)O-2; Nickel content; Heat generation; Thermal stability; ELECTROCHEMICAL PROPERTIES; CATHODE MATERIAL; PERFORMANCE; LINI1/3CO1/3MN1/3O2; AL; SUBSTITUTION; STABILITY;
D O I
10.1016/j.tca.2017.06.022
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermogenesis mechanism in the aspect of structural level and thermal hazard to the lithium ion battery are systematically analyzed for Li(NixCoyMnz)O-2(NCM, x = 1/3, 0.5, 0.6, 0.8). All the results confirmed by X-ray diffraction, X-ray photoelectron spectroscopy, alternating current impedance and a C80 micro-calorimeter indicate that with the increase of nickel content, the structure of NCM materials tends to collapse causing heat and the valance of Ni element is high enough to oxidize the electrolyte accelerating the decomposition of the electrolyte, also some electrolyte decomposition products are speculated to cover on the surface of the cathode with larger inner resistance for the battery. The thermal tests display that the total exothermic heat of both NCM-electrolyte system and full-cell system increases with increasing nickel content, which testifies the risk of high nickel NCM to the lithium ion battery.
引用
收藏
页码:176 / 180
页数:5
相关论文
共 34 条
  • [1] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [2] The effects of FePO4-coating on high-voltage cycling stability and rate capability of Li[Ni0.5Co0.2Mn0.3]O2
    Bai, Yansong
    Wang, Xianyou
    Yang, Shunyi
    Zhang, Xiaoyan
    Yang, Xiukang
    Shu, Hongbo
    Wu, Qiang
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 541 : 125 - 131
  • [3] Morphology and electrochemical properties of Al doped LiNi1/3Co1/3Mn1/3O2 nanofibers prepared by electrospinning
    Ding, Yanhuai
    Zhang, Ping
    Long, Zhilin
    Jiang, Yong
    Xu, Fu
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 487 (1-2) : 507 - 510
  • [4] Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries
    Hu, Shao-Kang
    Cheng, Geng-Hao
    Cheng, Ming-Yao
    Hwang, Bing-Joe
    Santhanam, Raman
    [J]. JOURNAL OF POWER SOURCES, 2009, 188 (02) : 564 - 569
  • [5] An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer
    Jo, Chang-Heum
    Cho, Dae-Hyun
    Noh, Hyung-Joo
    Yashiro, Hithshi
    Sun, Yang-Kook
    Myung, Seung Taek
    [J]. NANO RESEARCH, 2015, 8 (05) : 1464 - 1479
  • [6] Comparative Issues of Cathode Materials for Li-Ion Batteries
    Julien, Christian M.
    Mauger, Alain
    Zaghib, Karim
    Groult, Henri
    [J]. INORGANICS, 2014, 2 (01) : 132 - 154
  • [7] Effect of fluorine on Li[Ni1/3Co1/3Mn1/3]O2-zFz as lithium intercalation material
    Kim, GH
    Kim, MH
    Myung, ST
    Sun, YK
    [J]. JOURNAL OF POWER SOURCES, 2005, 146 (1-2) : 602 - 605
  • [8] Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/3]O2 (0≤x≤1)
    Koyama, Y
    Tanaka, I
    Adachi, H
    Makimura, Y
    Ohzuku, T
    [J]. JOURNAL OF POWER SOURCES, 2003, 119 : 644 - 648
  • [9] Hydrothermal synthesis and electrochemical performance studies of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries
    Li, Xueliang
    He, Wenxiang
    Chen, Li
    Guo, Wei
    Chen, Jiejie
    Xiao, Zhenghui
    [J]. IONICS, 2014, 20 (06) : 833 - 840
  • [10] Improving Electrochemical Performance of Fe doped Li1.2Ni0.13Co0.13Mn0.54O2 Cathode Material for Lithium-Ion Battery
    Liang, Xinghua
    Wu, Hanjie
    [J]. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (07): : 5829 - 5837