The Limit as p → 1 of the Higher Eigenvalues of the p-Laplacian Operator -Δp

被引:0
作者
Sabina De Lis, Jost C. [1 ,2 ]
Segura De Leon, Sergio [3 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38203, Spain
[2] Univ La Laguna, IUEA, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38203, Spain
[3] Univ Valencia, Dept Anal Matemat, Dr Moliner 50, Valencia 46100, Spain
关键词
Eigenvalues; eigenfunctions; 1-Laplacian operator; radial solutions; functions of bounded variation; CHEEGER SET; EXISTENCE; UNIQUENESS; EQUATIONS; BEHAVIOR; SPECTRUM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work provides a direct proof of the existence for each n is an element of N of the limit lambda((1),n) := lim(p -> 1) lambda((p),n) of the n-th Ljusternik-Schnirelman Dirichlet eigenvalue lambda((p),n) of -Delta(p) in a bounded Lipschitz domain Omega subset of R-N. Most importantly, it is shown that lambda((1),n) defines an eigenvalue of the 1-Laplacian operator -Delta(1), with a well-defined strong associated eigenfunction u(n) is an element of BV(Omega). In the main results of the paper, the radial LS eigenvalues of -Delta(1) are fully described, together with a detailed account on the profiles of their associated eigenfunctions. Our approach does not involve critical point theory for non-smooth functionals, although the definition of the LS-spectrum of -Delta(1) relies on it.
引用
收藏
页码:1395 / 1439
页数:45
相关论文
共 42 条
[1]   Uniqueness of the Cheeger set of a convex body [J].
Alter, Francois ;
Caselles, Vicent .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) :32-44
[2]   LUSTERNIK-SCHNIRELMAN THEORY AND NONLINEAR EIGENVALUE PROBLEMS [J].
AMANN, H .
MATHEMATISCHE ANNALEN, 1972, 199 (01) :55-&
[3]  
Ambrosio L., 2000, OX MATH M, pxviii
[4]  
ANANE A, 1987, C R ACAD SCI PARIS I
[5]  
ANANE A., 1996, PITMAN RES NOTES MAT, V343, P1, DOI DOI 10.1093/NQ/43.1.1
[6]   Minimizing total variation flow [J].
Andreau, F ;
Ballester, C ;
Caselles, V ;
Mazón, JM .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (11) :867-872
[7]   The Dirichlet problem for the total variation flow [J].
Andreu, F ;
Ballester, C ;
Caselles, V ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) :347-403
[8]  
[Anonymous], C R MATH ACAD SCI PA, V334, P1071, DOI [10.1016/S1631-073X(02)02405-6, DOI 10.1016/S1631-073X(02)02405-6]
[9]  
ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P294
[10]  
AZORERO JPG, 1987, COMMUN PART DIFF EQ, V12, P1389