Flower-like MoS2 nanocrystals: a powerful sorbent of Li+ in the Spiro-OMeTAD layer for highly efficient and stable perovskite solar cells

被引:83
作者
Jiang, Lu-Lu [1 ]
Wang, Zhao-Kui [2 ]
Li, Meng [2 ]
Li, Chun-He [1 ]
Fang, Peng-Fei [1 ]
Liao, Liang-Sheng [2 ]
机构
[1] Wuhan Univ, Dept Phys, Hubei Nucl Solid Phys Key Lab, Wuhan 430072, Hubei, Peoples R China
[2] Soochow Univ, Joint Int Res Lab Carbon Based Funct Mat & Device, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
HIGH-PERFORMANCE; TRANSPORTING LAYER; HYSTERESIS; STABILITY;
D O I
10.1039/c8ta11800k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
2,2,7,7-Tetrakis-(N, N-di-p-methoxyphenylamine) 9,9-bifluorene (Spiro-OMeTAD) is a widely employed hole-transporting layer (HTL) in typical n-i-p structure perovskite solar cells (PSCs). And the p-type dopants of bis(trifluoromethane) sulfonimide lithium salt (Li-TFSI) and tert-butylpyridine (tBP) have to be utilized to improve the hole mobility and film conductivity of Spiro-OMeTAD. However, the incorporation of these additives will cause the issue of deliquescence, strongly speeding up the degradation of the Spiro-OMeTAD layer and thus of the perovskite layer. Herein, we developed a modified Spiro-OMeTAD layer using MoS2 with the 2H semiconducting phase and flower-like microstructure. The addition of MoS2 played an important role in improving the hole mobility and enhancing the film stability of Spiro-OMeTAD. The resulting PSCs based on the MoS2-modified Spiro-OMeTAD HTL delivered a champion power conversion efficiency as high as 20.18%. More importantly, the incorporation of MoS2 could suppress the Li+ migration in the HTL owing to the strong adsorption ability and large specific surface area of flower-like MoS2 nanoparticles. As a result, the fabricated PSC without encapsulation exhibited promising stability by retaining almost 85% of the initial PCE even after 300 h exposure to air while the reference device only retained about 30% of its initial PCE.
引用
收藏
页码:3655 / 3663
页数:9
相关论文
共 41 条
[1]   Highly efficient planar perovskite solar cells through band alignment engineering [J].
Baena, Juan Pablo Correa ;
Steier, Ludmilla ;
Tress, Wolfgang ;
Saliba, Michael ;
Neutzner, Stefanie ;
Matsui, Taisuke ;
Giordano, Fabrizio ;
Jacobsson, T. Jesper ;
Kandada, Ajay Ram Srimath ;
Zakeeruddin, Shaik M. ;
Petrozza, Annamaria ;
Abate, Antonio ;
Nazeeruddin, Mohammad Khaja ;
Graetzel, Michael ;
Hagfeldt, Anders .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2928-2934
[2]   A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells [J].
Bu, Tongle ;
Liu, Xueping ;
Zhou, Yuan ;
Yi, Jianpeng ;
Huang, Xin ;
Luo, Long ;
Xiao, Junyan ;
Ku, Zhiliang ;
Peng, Yong ;
Huang, Fuzhi ;
Cheng, Yi-Bing ;
Zhong, Jie .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (12) :2509-2515
[3]   Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells [J].
Bu, Tongle ;
Wu, Lan ;
Liu, Xueping ;
Yang, Xiaokun ;
Zhou, Peng ;
Yu, Xinxin ;
Qin, Tianshi ;
Shi, Jiangjian ;
Wang, Song ;
Li, Saisai ;
Ku, Zhiliang ;
Peng, Yong ;
Huang, Fuzhi ;
Meng, Qingbo ;
Cheng, Yi-Bing ;
Zhong, Jie .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)
[4]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[5]   Ionic Additive Engineering Toward High-Efficiency Perovskite Solar Cells with Reduced Grain Boundaries and Trap Density [J].
Cai, Feilong ;
Yan, Yu ;
Yao, Jiaxu ;
Wang, Pang ;
Wang, Hui ;
Gurney, Robert S. ;
Liu, Dan ;
Wang, Tao .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (34)
[6]   Few-Layer MoS2 Flakes as Active Buffer Layer for Stable Perovskite Solar Cells [J].
Capasso, Andrea ;
Matteocci, Fabio ;
Najafi, Leyla ;
Prato, Mirko ;
Buha, Joka ;
Cina, Lucio ;
Pellegrini, Vittorio ;
Di Carlo, Aldo ;
Bonaccorso, Francesco .
ADVANCED ENERGY MATERIALS, 2016, 6 (16)
[7]   Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries [J].
Chen, Yu Ming ;
Yu, Xin Yao ;
Li, Zhen ;
Paik, Ungyu ;
Lou, Xiong Wen .
SCIENCE ADVANCES, 2016, 2 (07)
[8]   Photo-induced halide redistribution in organic-inorganic perovskite films [J].
deQuilettes, Dane W. ;
Zhang, Wei ;
Burlakov, Victor M. ;
Graham, Daniel J. ;
Leijtens, Tomas ;
Osherov, Anna ;
Bulovic, Vladimir ;
Snaith, Henry J. ;
Ginger, David S. ;
Stranks, Samuel D. .
NATURE COMMUNICATIONS, 2016, 7
[9]   Ions Matter: Description of the Anomalous Electronic Behavior in Methylammonium Lead Halide Perovskite Devices [J].
Game, Onkar S. ;
Buchsbaum, Gabriel J. ;
Zhou, Yuanyuan ;
Padture, Nitin P. ;
Kingon, Angus I. .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (16)
[10]   Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction [J].
Geng, Xiumei ;
Sun, Weiwei ;
Wu, Wei ;
Chen, Benjamin ;
Al-Hilo, Alaa ;
Benamara, Mourad ;
Zhu, Hongli ;
Watanabe, Fumiya ;
Cui, Jingbiao ;
Chen, Tar-pin .
NATURE COMMUNICATIONS, 2016, 7