Inverse analysis method using spectral decomposition of Green's function

被引:11
作者
Hori, M [1 ]
机构
[1] Univ Tokyo, Earthquake Res Inst, Tokyo 1130032, Japan
关键词
compact operators; function analysis; inversion; spectral decomposition;
D O I
10.1046/j.1365-246X.2001.00505.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An inverse analysis method using the spectral decomposition of Green's function is proposed. For linear inverse problems of identifying inner sources from surface responses. Green's function. relates the sources to the responses. Since this function behaves as a compact operator, it admits the spectral decomposition and is expressed as a sum of distinct eigen values and eigen functions. A suitable inverse operator that maps the responses to the sources is then determined. The proposed method consists of the following three procedures: (1) numerically computing the spectral decomposition and determining the inverse operator, (2) estimating a response function using a set of measured data, and (3) predicting a source function from the response function using inverse operator. A simple inverse analysis method, which uses a pointwise discretization of Green's function and computes a generalized inverse matrix applying the singular-value decomposition. is regarded as an approximation to compute the inverse operator, The accuracy, however. is much lower than the proposed method, because of the pointwise discretization and the less accurate computation of the spectral decomposition. Illustrative examples are solved to demonstrate the usefulness of the proposed inverse analysis method. Errors due to improper calculation of the inverse operator of Green's function are shown.
引用
收藏
页码:77 / 87
页数:11
相关论文
共 50 条
  • [31] Review of source models for reproducing and predicting strong motions by empirical Green's function method
    Dan, Kazuo
    JAPAN ARCHITECTURAL REVIEW, 2024, 7 (01):
  • [32] Skew Young Diagram Method in Spectral Decomposition of Integrable Lattice Models
    A. N. Kirillov
    A. Kuniba
    T. Nakanishi
    Communications in Mathematical Physics, 1997, 185 : 441 - 465
  • [33] Fling-step ground motions simulation using theoretical-based Green's function technique for structural analysis
    Hamidi, Hamed
    Khosravi, Horr
    Soleimani, Reza
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2018, 115 : 232 - 245
  • [34] Applied research of synchrosqueezing wavelet transform in seismic spectral decomposition method
    Research Institute of Exploration and Development, Tarim Oilfield Company, PetroChina, Korla, China
    不详
    不详
    Geophys. Prospect. Pet., 1 (51-55 and 82): : 51 - 55and82
  • [35] THE SPECTRAL DECOMPOSITION OF CAUCHY PROBLEM'S SOLUTION FOR LAPLACE EQUATION
    Shaldanbaeva, A. A.
    Akylbayev, M., I
    Shaldanbaev, A. Sh
    Beisebaeva, A. Zh
    NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2018, 5 (321): : 75 - 87
  • [36] CONSTANT-TIME BILATERAL FILTER USING SPECTRAL DECOMPOSITION
    Sugimoto, Kenjiro
    Breckon, Toby
    Kamata, Sei-ichiro
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3319 - 3323
  • [37] Improved Model Fitting for the Empirical Green's Function Approach Using Hierarchical Models
    Van Houtte, Chris
    Denolle, Marine
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2018, 123 (04) : 2923 - 2942
  • [38] Optimal input design for system identification using spectral decomposition
    Mohan, Shravan
    Mithun, I. M.
    Bhikkaji, Bharath
    INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (04) : 980 - 992
  • [39] Simulation of 2003 Bam (Iran) earthquake using empirical Green's function method via very small and near-fault events
    Riahi, Ali
    Sadeghi, Hossein
    Hosseini, Sayyed Keivan
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 201 (03) : 1264 - 1286
  • [40] Stochastic optimal preview control response of a quarter-car nonlinear suspension model using spectral decomposition method
    Gopala Rao L.V.V.
    Sharma R.C.
    Satyanarayana V.S.V.
    Palli S.
    Noise and Vibration Worldwide, 2022, 53 (4-5) : 225 - 232