ASYMPTOTIC BEHAVIOR OF GROUND STATE SOLUTIONS FOR SUBLINEAR AND SINGULAR NONLINEAR DIRICHLET PROBLEMS

被引:0
|
作者
Chemmam, Rym [1 ]
Dhifli, Abdelwaheb [1 ]
Maagli, Habib [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Tunis 2092, Tunisia
关键词
Asymptotic behavior; Dirichlet problem; ground sate solution; singular equations; sublinear equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we are concerned with the asymptotic behavior of the classical solution to the semilinear boundary-value problem Delta u + a(x)u(sigma) = 0 in R-n, u > 0, lim(vertical bar x vertical bar -> infinity) u(x) = 0, where sigma < 1. The special feature is to consider the function a in C-loc(alpha)(R-n), 0 < alpha < 1, such that there exists c > 0 satisfying 1/c L(vertical bar x vertical bar + 1)/(1 + vertical bar x vertical bar)(lambda) <= a(x) <= c L(vertical bar x vertical bar + 1)/(1 + vertical bar x vertical bar)(lambda), where L(t) := exp (integral(t)(1) z(s)/s ds), with z is an element of C([1, infinity)) such that lim(t -> infinity) z(t) = 0. The comparable asymptotic rate of a(x) determines the asymptotic behavior of the solution.
引用
收藏
页数:12
相关论文
共 50 条