Maximal arcs and extended cyclic codes

被引:6
作者
De Winter, Stefaan [1 ]
Ding, Cunsheng [2 ]
Tonchev, Vladimir D. [3 ]
机构
[1] Michigan Technol Univ, Houghton, MI 49921 USA
[2] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[3] Michigan Technol Univ, Houghton, MI 49931 USA
关键词
Maximal arc; 2-Design; Two-weight code; Cyclic code; PROJECTIVE-PLANES; WEIGHTS;
D O I
10.1007/s10623-018-0514-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is proved that for every d2 such that d-1 divides q-1, where q is a power of 2, there exists a Denniston maximal arc A of degree d in PG(2,q), being invariant under a cyclic linear group that fixes one point of A and acts regularly on the set of the remaining points of A. Two alternative proofs are given, one geometric proof based on Abatangelo-Larato's characterization of Denniston arcs, and a second coding-theoretical proof based on cyclotomy and the link between maximal arcs and two-weight codes.
引用
收藏
页码:807 / 816
页数:10
相关论文
共 23 条
[1]  
ABATANGELO V, 1989, GEOMETRIAE DEDICATA, V30, P197
[2]  
Assmus E. F. Jr., 1969, Journal of Combinatorial Theory, Series A, V6, P122, DOI 10.1016/S0021-9800(69)80115-8
[3]   Maximal arcs in Desarguesian planes of odd order do not exist [J].
Ball, S ;
Blokhuis, A ;
Mazzocca, F .
COMBINATORICA, 1997, 17 (01) :31-41
[4]  
Barlotti A., 1956, BOLL MAT ITAL 3, V11, P553
[5]   WEIGHTS OF IRREDUCIBLE CYCLIC CODES [J].
BAUMERT, LD ;
MCELIECE, RJ .
INFORMATION AND CONTROL, 1972, 20 (02) :158-&
[6]   THE GEOMETRY OF 2-WEIGHT CODES [J].
CALDERBANK, R ;
KANTOR, WM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :97-122
[7]   A geometric approach to Mathon maximal arcs [J].
De Clerck, F. ;
De Winter, S. ;
Maes, T. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (04) :1196-1211
[8]  
Delsarte P., 1971, R160 MBLE RES LAB, VR160
[9]  
Denniston R., 1969, J. Comb. Theory, V6, P317
[10]   Hamming weights in irreducible cyclic codes [J].
Ding, Cunsheng ;
Yang, Jing .
DISCRETE MATHEMATICS, 2013, 313 (04) :434-446