Shape recovery for sparse-data tomography

被引:5
|
作者
Haario, Heikki [1 ]
Kallonen, Aki [2 ]
Laine, Marko [3 ]
Niemi, Esa [4 ]
Purisha, Zenith [4 ,5 ]
Siltanen, Samuli [4 ]
机构
[1] Lappeenrannan Teknillinen Yliopisto, Lappeenranta, Finland
[2] Univ Helsinki, Dept Phys, Helsinki, Finland
[3] Finnish Meteorol Inst, Helsinki, Finland
[4] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[5] Univ Gadjah Mada, Dept Math, Yogyakarta, Indonesia
基金
芬兰科学院;
关键词
CAD; MCMC; NURBS; reverse engineering; shape recovery; X-ray tomography; COSMIC-RAY MUONS; COMPUTED-TOMOGRAPHY; STATISTICAL INVERSION; INTERNAL STRUCTURE; LINE INTEGRALS; RECONSTRUCTION; EVOLUTION; REPRESENTATION; RADIOGRAPHS; COMPUTATION;
D O I
10.1002/mma.4480
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two-dimensional sparse-data tomographic problem is studied. The target is assumed to be a homogeneous object bounded by a smooth curve. A nonuniform rational basis splines (NURBS) curve is used as a computational representation of the boundary. This approach conveniently provides the result in a format readily compatible with computer-aided design software. However, the linear tomography task becomes a nonlinear inverse problem because of the NURBS-based parameterization. Therefore, Bayesian inversion with Markov chain Monte Carlo sampling is used for calculating an estimate of the NURBS control points. The reconstruction method is tested with both simulated data and measured X-ray projection data. The proposed method recovers the shape and the attenuation coefficient significantly better than the baseline algorithm (optimally thresholded total variation regularization), but at the cost of heavier computation.
引用
收藏
页码:6649 / 6669
页数:21
相关论文
共 50 条
  • [1] COMPUTERIZED-TOMOGRAPHY FOR SPARSE-DATA PLASMA PHYSICS EXPERIMENTS
    WILLIAMSON, JH
    EVANS, DE
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 1982, 10 (02) : 82 - 93
  • [2] Adaptive frequency-domain regularization for sparse-data tomography
    Kalke, Martti
    Siltanen, Samuli
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2013, 21 (07) : 1099 - 1124
  • [3] Sparse-Data Forecasting of Megacity Growth
    Westervelt, James D.
    Ehlschlaeger, Charles R.
    Burkhalter, Jeffrey A.
    Baxter, Carey L.
    MILITARY OPERATIONS RESEARCH, 2017, 22 (03) : 21 - 34
  • [4] Image reconstruction based on compressed sensing for sparse-data endoscopic photoacoustic tomography
    Sun Zheng
    Yan Xiangyang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 116
  • [5] Meta-Analysis and Sparse-Data Bias
    Richardson, David B.
    Cole, Stephen R.
    Ross, Rachael K.
    Poole, Charles
    Chu, Haitao
    Keil, Alexander P.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (02) : 336 - 340
  • [6] 3D sparse-data Kirchhoff redatuming
    Tegtmeier, S
    Gisolf, A
    Verschuur, DJ
    GEOPHYSICAL PROSPECTING, 2004, 52 (06) : 509 - 521
  • [7] Adaptive frequency-domain regularization for sparse-data tomography (vol 21, pg 1099, 2013)
    Kalke, M.
    Siltanen, S.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2013, 21 (07)
  • [8] Editorial: Sparse-data BiasWhat the Savvy Reader Needs to Know
    Leopold, Seth S.
    Porcher, Raphael
    CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2018, 476 (04) : 657 - 659
  • [9] Identification of low frequency and rare variants for hypertension using sparse-data methods
    Ji-Hyung Shin
    Ruiyang Yi
    Shelley B. Bull
    BMC Proceedings, 10 (Suppl 7)
  • [10] SPARSE RECOVERY FOR DISCRETE TOMOGRAPHY
    Lin, Yen-ting
    Ortega, Antonio
    Dimakis, Alexandros G.
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 4181 - 4184