机构:
Calif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USACalif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USA
Heubach, S.
[1
]
Knopfmacher, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal & Number The, Johannesburg, South AfricaCalif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USA
Knopfmacher, A.
[2
]
Mays, M. E.
论文数: 0引用数: 0
h-index: 0
机构:
W Virginia Univ, Morgantown, WV 26506 USACalif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USA
Mays, M. E.
[3
]
Munagi, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal & Number The, Johannesburg, South AfricaCalif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USA
Munagi, A.
[2
]
机构:
[1] Calif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USA
[2] Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal & Number The, Johannesburg, South Africa
A composition of the positive integer n is a representation of n as an ordered sum of positive integers n = a(1) + a(2) + ... + am. It is well known that there are 2(n-1) compositions of n. An inversion in a composition is a pair of summands {a(i), a(j)} for which i < j and a(i) > a(j). The number of inversions of a composition is an indication of how far the composition is from a partition of n, which by convention uses a sequence of nondecreasing summands and has no inversions. We consider counting techniques for determining both the number of inversions in the set of compositions of n and the number of compositions of n with a given number of inversions. We provide explicit bijections to resolve several conjectures, and also consider asymptotic results.