GLOBAL EXISTENCE AND SCATTERING OF EQUIVARIANT DEFOCUSING CHERN-SIMONS-SCHRODINGER SYSTEM

被引:0
作者
Yuan, Jianjun [1 ]
机构
[1] Nanjing Univ Chinese Med, Sch Artificial Intelligence & Informat Technol, Nanjing 210046, Peoples R China
关键词
Chern-Simons-Schrodinger; concentration compactness; profile decomposition; scatter; global existence; WELL-POSEDNESS; NORMALIZED SOLUTIONS; ENERGY SPACE; BLOW-UP; EQUATIONS;
D O I
10.3934/dcds.2020237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following equivariant defocusing Chern-Simons-Schrodinger system, i partial derivative(t)phi + Delta phi = 2m/r(2) A(theta)phi + A(0)phi + 1/r(2) A(theta)(2)phi - lambda vertical bar phi vertical bar(p-2)phi, partial derivative(r)A(0) = 1/r (m + A(theta)) vertical bar phi vertical bar(2), partial derivative(t)A(theta) = rIm((phi) over bar partial derivative(r)phi), partial derivative(r)A(theta) = --1/2 vertical bar phi vertical bar(2)r, A(r) = 0. where phi(t, x(1), x(2)) : R1+2 -> R is a complex scalar field, A mu(t , x(1), x(2)) : R1+2 -> R is the gauge field for mu = 0, 1, 2, A(r) = x(1)/vertical bar x vertical bar A(1) + x(2)/vertical bar x vertical bar A(2), A(theta) = - x(2)A(1) + x(1)A(2), lambda < 0 and p > 4. When p > 4, the system is in the mass supercritical and energy subcrtical range. By using the conservation law of the system and the concentration compactness method introduced in [17], we show that the solution of the system exists globally and scatters.
引用
收藏
页码:5541 / 5570
页数:30
相关论文
共 28 条
  • [1] High frequency approximation of solutions to critical nonlinear wave equations
    Bahouri, H
    Gérard, P
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) : 131 - 175
  • [2] BLOWING-UP TIME-DEPENDENT SOLUTIONS OF THE PLANAR, CHERN-SIMONS GAUGED NONLINEAR SCHRODINGER-EQUATION
    BERGE, L
    DEBOUARD, A
    SAUT, JC
    [J]. NONLINEARITY, 1995, 8 (02) : 235 - 253
  • [3] On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrodinger equations
    Byeon, Jaeyoung
    Huh, Hyungjin
    Seok, Jinmyoung
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) : 1285 - 1316
  • [4] Standing waves of nonlinear Schrodinger equations with the gauge field
    Byeon, Jaeyoung
    Huh, Hyungjin
    Seok, Jinmyoung
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (06) : 1575 - 1608
  • [5] Global well-posedness and scattering for nonlinear Schrodinger equations with combined nonlinearities in the radial case
    Cheng, Xing
    Miao, Changxing
    Zhao, Lifeng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) : 2881 - 2934
  • [6] Dunne G., 1995, LECT NOTES PHYS MONO, V36
  • [7] Duyckaerts T, 2008, MATH RES LETT, V15, P1233
  • [8] Scattering for the focusing energy-subcritical nonlinear Schrodinger equation
    Fang DaoYuan
    Xie Jian
    Cazenave Thierry
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (10) : 2037 - 2062
  • [9] GINIBRE J, 1985, J MATH PURE APPL, V64, P363
  • [10] A sharp condition for scattering of the radial 3D cubic nonlinear Schrodinger equation
    Holmer, Justin
    Roudenko, Svetlana
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (02) : 435 - 467