A Numerical Method for Solving Elasticity Equations with Interfaces
被引:37
作者:
Hou, Songming
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana Tech Univ, Dept Math & Stat, Ruston, LA 71272 USALouisiana Tech Univ, Dept Math & Stat, Ruston, LA 71272 USA
Hou, Songming
[1
]
Li, Zhilin
论文数: 0引用数: 0
h-index: 0
机构:
N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
Nanjing Normal Univ, Nanjing, Peoples R ChinaLouisiana Tech Univ, Dept Math & Stat, Ruston, LA 71272 USA
Li, Zhilin
[2
,3
]
Wang, Liqun
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana Tech Univ, Dept Math & Stat, Ruston, LA 71272 USALouisiana Tech Univ, Dept Math & Stat, Ruston, LA 71272 USA
Wang, Liqun
[1
]
Wang, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana Tech Univ, Dept Math & Stat, Ruston, LA 71272 USALouisiana Tech Univ, Dept Math & Stat, Ruston, LA 71272 USA
Wang, Wei
[1
]
机构:
[1] Louisiana Tech Univ, Dept Math & Stat, Ruston, LA 71272 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
Solving elasticity equations with interfaces is a challenging problem for most existing methods. Nonetheless, it has wide applications in engineering and science. An accurate and efficient method is desired. In this paper, an efficient non-traditional finite element method with non-body-fitting grids is proposed to solve elasticity equations with interfaces. The main idea is to choose the test function basis to be the standard finite element basis independent of the interface and to choose the solution basis to be piecewise linear satisfying the jump conditions across the interface. The resulting linear system of equations is shown to be positive definite under certain assumptions. Numerical experiments show that this method is second order accurate in the L norm for piecewise smooth solutions. More than 1.5th order accuracy is observed for solution with singularity (second derivative blows up) on the sharp-edged interface corner.
引用
收藏
页码:595 / 612
页数:18
相关论文
共 24 条
[1]
[Anonymous], 1983, Teubner Texts in Mathematics
机构:
N Carolina State Univ, Dept Math, Raleigh, NC 27695 USAN Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
Gong, Yan
Li, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USAN Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
Li, Bo
Li, Zhilin
论文数: 0引用数: 0
h-index: 0
机构:
N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USAN Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
机构:
N Carolina State Univ, Dept Math, Raleigh, NC 27695 USAN Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
Gong, Yan
Li, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USAN Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
Li, Bo
Li, Zhilin
论文数: 0引用数: 0
h-index: 0
机构:
N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USAN Carolina State Univ, Dept Math, Raleigh, NC 27695 USA