PARALLEL COMPUTATION OF ENTRIES OF A-1

被引:14
|
作者
Amestoy, Patrick R. [1 ]
Duff, Iain S. [2 ,3 ]
L'Excellent, Jean-Yves [4 ,5 ]
Rouet, Francois-Henry [1 ,6 ]
机构
[1] Univ Toulouse, INPT ENSEEIHT IRIT, F-31071 Toulouse, France
[2] CERFACS, F-31057 Toulouse, France
[3] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
[4] Univ Lyon, Inria, F-69364 Lyon 07, France
[5] Univ Lyon, Lab LIP UMR CNRS ENS Lyon Inria 5668, F-69364 Lyon 07, France
[6] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2015年 / 37卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
sparse matrices; direct methods for linear system and matrix inversion; parallel algorithms; ALGORITHM; SYSTEMS; MATRIX;
D O I
10.1137/120902616
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the computation in parallel of several entries of the inverse of a large sparse matrix. We assume that the matrix has already been factorized by a direct method and that the factors are distributed. Entries are efficiently computed by exploiting sparsity of the right-hand sides and the solution vectors in the triangular solution phase. We demonstrate that in this setting, parallelism and computational efficiency are two contrasting objectives. We develop an efficient approach and show its efficiency on a general purpose parallel multifrontal solver.
引用
收藏
页码:C268 / C284
页数:17
相关论文
共 50 条
  • [1] Parallel computation of determinants of matrices with polynomial entries
    Marco, A
    Martínez, JJ
    JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (06) : 749 - 760
  • [2] Parallel computation of determinants of matrices with multivariate polynomial entries
    CHEN LiangYu
    ZENG ZhenBing
    ScienceChina(InformationSciences), 2013, 56 (11) : 158 - 173
  • [3] Parallel computation of determinants of matrices with multivariate polynomial entries
    Chen LiangYu
    Zeng ZhenBing
    SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (11) : 1 - 16
  • [4] Parallel computation of determinants of matrices with multivariate polynomial entries
    LiangYu Chen
    ZhenBing Zeng
    Science China Information Sciences, 2013, 56 : 1 - 16
  • [5] Efficient Computation of Covariance Matrix Entries
    Lin, Yuzhang
    Abur, Ali
    2015 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2015,
  • [6] Computation of destructive satellite re-entries
    Fritsche, B
    Koppenwallner, G
    PROCEEDINGS OF THE THIRD EUROPEAN CONFERENCE ON SPACE DEBRIS, VOLS 1 AND 2, 2001, 473 : 527 - 532
  • [7] PARALLEL COMPUTATION
    HUBERMAN, BA
    COMPUTER PHYSICS COMMUNICATIONS, 1989, 56 (01) : 25 - 42
  • [8] Computation of EFIE Matrix Entries With Singular Basis Functions
    Graglia, Roberto D.
    Peterson, Andrew F.
    Petrini, Paolo
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (11) : 6217 - 6224
  • [9] Specimen A-1
    Australian and New Zealand Physicist, 1993, 30 (08):
  • [10] A TRIBUTE TO A-1
    CAUM, JW
    ASTM STANDARDIZATION NEWS, 1983, 11 (12): : 5 - 5