Quasi-multipliers on topological semigroups and their Stone-Cech compactification

被引:0
作者
Alinejad, A. [1 ]
Essmaili, M. [2 ]
Rostami, M. [3 ]
机构
[1] Univ Tehran, Coll Farabi, Tehran, Iran
[2] Kharazmi Univ, Fac Math & Comp Sci, Dept Math, 50 Taleghani Ave, Tehran 15618, Iran
[3] Amirkabir Univ Technol, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
关键词
Quasi-multiplier; topological semigroup; ultra-approximate identity; Stone-Cech compactification; LOCALLY COMPACT-GROUPS; ALGEBRA; CONTINUITY; SPACES;
D O I
10.1142/S0219498822501481
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study the notion of quasi-multipliers on a semi-topological semigroup S. The set of all quasi-multipliers on S is denoted by QM(S). First, we study the problem of extension of quasi-multipliers on topological semigroups to its Stone-Cech compactification. Indeed, we prove if S is a topological semigroup such that S x S is pseudocompact, then QM(S) can be regarded as a subset of QM(beta S). Moreover, with an extra condition we describe QM(S) as a quotient subsemigroup of beta S. Finally, we investigate quasi-multipliers on topological semigroups, its relationship with multipliers and give some concrete examples.
引用
收藏
页数:14
相关论文
共 26 条
[1]   COMPLICATIONS OF SEMICONTINUITY IN CSTAR-ALGEBRA THEORY [J].
AKEMANN, CA ;
PEDERSEN, GK .
DUKE MATHEMATICAL JOURNAL, 1973, 40 (04) :785-795
[2]   ON QUASI-MULTIPLIERS [J].
ARGUN, Z ;
ROWLANDS, K .
STUDIA MATHEMATICA, 1994, 108 (03) :217-245
[3]   STONE-CECH COMPACTIFICATION OF A TOPOLOGICAL SEMIGROUP [J].
BAKER, JW ;
BUTCHER, RJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 80 (JUL) :103-107
[4]   COMPACT LEFT IDEAL GROUPS IN SEMIGROUP COMPACTIFICATION OF LOCALLY COMPACT-GROUPS [J].
BAKER, JW ;
LAU, AT .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 113 :507-517
[5]  
Banakh T, 2010, COMMENT MATH UNIV CA, V51, P113
[6]  
Berglund J. F., 1989, Analysis on semigroups. Function spaces, compactifications
[7]   THE MULTIPLIER ALGEBRA OF A BEURLING ALGEBRA [J].
Bhatt, S. J. ;
Dabhi, P. A. ;
Dedania, H. V. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (01) :113-120
[8]   Multipliers of weighted semigroups and associated Beurling Banach algebras [J].
Bhatt, S. J. ;
Dabhi, P. A. ;
Dedania, H. V. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2011, 121 (04) :417-433
[9]   PSEUDOCOMPACTNESS AND UNIFORM CONTINUITY IN TOPOLOGICAL GROUPS [J].
COMFORT, WW ;
ROSS, KA .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 16 (03) :483-&
[10]   On the Multiplier Semigroup of a Weighted Abelian Semigroup [J].
Dabhi, Prakash A. ;
Pandey, Manish Kumar .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (01) :203-212