Structural correlates of active-staining following magnetic resonance microscopy in the mouse brain

被引:23
作者
Cleary, Jon O. [1 ,2 ,3 ]
Wiseman, Frances K. [4 ]
Norris, Francesca C. [1 ,2 ,5 ]
Price, Anthony N. [1 ,2 ]
Choy, ManKin [1 ,2 ]
Tybulewicz, Victor L. J. [6 ]
Ordidge, Roger J. [3 ,7 ]
Brandner, Sebastian [8 ,9 ]
Fisher, Elizabeth M. C. [4 ]
Lythgoe, Mark F. [1 ,2 ]
机构
[1] UCL, Ctr Adv Biomed Imaging, Dept Med, Paul OGorman Bldg,72 Huntley St, London WC1E 6DD, England
[2] UCL, Inst Child Hlth, London WC1E 6DD, England
[3] UCL, Dept Med Phys & Bioengn, London WC1E 6BT, England
[4] UCL, Inst Neurol, Dept Neurodegenerat Dis, London WC1N 3BG, England
[5] UCL, Ctr Math & Phys Life Sci & Expt Biol CoMPLEX, London WC1E 6BT, England
[6] Natl Inst Med Res, MRC, London NW7 1AA, England
[7] UCL, Wellcome Trust Adv MRI Grp, London WC1N 3BG, England
[8] UCL, Div Neuropathol, London WC1N 3BG, England
[9] UCL, Dept Neurodegenerat Dis, Inst Neurol, London WC1N 3BG, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
Magnetic resonance microscopy; Mouse brain phenotyping; Active staining; Mouse brain histology; Immunohistochemistry; Myelin; Grey matter; MR MICROSCOPY; RELAXATION; HISTOLOGY; CONTRAST; T2; MANIPULATION; MODEL; 2D; T1;
D O I
10.1016/j.neuroimage.2011.01.082
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Extensive worldwide efforts are underway to produce knockout mice for each of the similar to 25,000 mouse genes, which may give new insights into the underlying pathophysiology of neurological disease. Microscopic magnetic resonance imaging (mu MRI) is a key method for non-invasive morphological phenotyping, capable of producing high-resolution 30 images of ex-vivo brains, after fixation with an MR contrast agent. These agents have been suggested to act as active-stains, enhancing structures not normally visible on MRI. In this study, we investigated the structural correlates of the MRI agent Gd-DTPA, together with the optimal preparation and scan parameters for contrast-enhanced gradient-echo imaging of the mouse brain. We observed that in-situ preparation was preferential to ex-situ due to the degree of extraction damage. In-situ brains scanned with optimised parameters. enabled images with a high signal-to-noise-ratio (SNR similar to 30) and comprehensive anatomical delineation. Direct con-elation of the MR brain structures to histology, detailed fine histoarchitecture in the cortex, cerebellum, olfactory bulb and hippocampus. Neurofilament staining demonstrated that regions of negative MR contrast strongly correlated to myelinated white-matter structures, whilst structures of more positive MR contrast corresponded to areas with high grey matter content. We were able to identify many sub-regions, particularly within the hippocampus. such as the unmyelinated mossy fibres (stratum lucidum) and their region of synapse in the stratum pyramidale. together with the granular layer of the dentate gyrus, an area of densely packed cell bodies, which was clearly visible as a region of hyperintensity. This suggests that cellular structure influences the site-specific distribution of the MR contrast agent, resulting in local variations in T-2*, which leads to enhanced tissue discrimination. Our findings provide insights not only into the cellular distribution and mechanism of MR active-staining, but also allow for three dimensional analysis, which enables interpretation of magnetic resonance microscopy brain data and highlights cellular structure for investigation of disease processes in development and disease. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:974 / 983
页数:10
相关论文
共 37 条
[1]   Morphometric analysis of the C57BL/6J mouse brain [J].
Badea, A. ;
Ali-Sharief, A. A. ;
Johnson, G. A. .
NEUROIMAGE, 2007, 37 (03) :683-693
[2]   Neuroanatomical phenotypes in the Reeler mouse [J].
Badea, Alexandra ;
Nicholls, Peter J. ;
Johnson, G. Allan ;
Wetsel, William C. .
NEUROIMAGE, 2007, 34 (04) :1363-1374
[3]   Magnetic resonance microscopy of the C57BL mouse brain [J].
Benveniste, H ;
Kim, K ;
Zhang, L ;
Johnson, GA .
NEUROIMAGE, 2000, 11 (06) :601-611
[4]   Optimising imaging parameters for post mortem MR imaging of the human brain [J].
Blamire, AM ;
Rowe, JG ;
Styles, P ;
McDonald, B .
ACTA RADIOLOGICA, 1999, 40 (06) :593-597
[5]   MRI of cellular layers in mouse brain in vivo [J].
Boretius, Susann ;
Kasper, Lars ;
Tammer, Roland ;
Michaelis, Thomas ;
Frahm, Jens .
NEUROIMAGE, 2009, 47 (04) :1252-1260
[6]  
CLEARY JO, 2010, NEUROIMAGE
[7]   Cardiac phenotyping in ex vivo murine embryos using μMRI [J].
Cleary, Jon O. ;
Price, Anthony N. ;
Thomas, David L. ;
Scambler, Peter J. ;
Kyriakopoulou, Vanessa ;
McCue, Karen ;
Schneider, Juergen E. ;
Ordidge, Roger J. ;
Lythgoe, Mark F. .
NMR IN BIOMEDICINE, 2009, 22 (08) :857-866
[8]  
Counsell SJ, 2003, AM J NEURORADIOL, V24, P1654
[9]   A QUANTITATIVE-GENETIC ANALYSIS OF HIPPOCAMPAL VARIATION IN THE MOUSE [J].
CRUSIO, WE ;
GENTHNERGRIMM, G ;
SCHWEGLER, H .
JOURNAL OF NEUROGENETICS, 1986, 3 (04) :203-214
[10]   Postmortem MRI of Human Brain Hemispheres: T2 Relaxation Times During Formaldehyde Fixation [J].
Dawe, Robert J. ;
Bennett, David A. ;
Schneider, Julie A. ;
Vasireddi, Sunil K. ;
Arfanakis, Konstantinos .
MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (04) :810-818