MAGE: Automatic diagnosis of autism spectrum disorders using multi-atlas graph convolutional networks and ensemble learning

被引:40
作者
Wang, Yufei [1 ,3 ]
Liu, Jin [1 ]
Xiang, Yizhen [1 ]
Wang, Jianxin [1 ]
Chen, Qingyong [2 ,3 ]
Chong, Jing [2 ,3 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Hunan Prov Key Lab Bioinformat, Changsha 410083, Peoples R China
[2] China Mobile Chengdu Ind Res Inst, Chengdu 610041, Peoples R China
[3] Mobile Hlth Minist Educ, China Mobile Joint Lab, Changsha 410008, Peoples R China
基金
中国国家自然科学基金;
关键词
Autism spectrum disorders; Automatic diagnosis; Functional connectivity; Multi-atlas; Graph convolutional networks; Ensemble learning; CLASSIFICATION; CONNECTIVITY; SELECTION;
D O I
10.1016/j.neucom.2020.06.152
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, it is still a great challenge in clinical practice to accurately diagnose autism spectrum disorder (ASD). To address this challenge, in this study we propose a method for automatic diagnosis of ASD based on multi-atlas graph convolutional networks and ensemble learning. Firstly, we extract multiple feature representations based on functional connectivity (FC) of different brain atlases from fMRI data of each subject. Then, to obtain the features that are more helpful for ASD automatic diagnosis, we propose a multi-atlas graph convolutional network method (MAGCN). Finally, to combine different feature representations, we propose a stacking ensemble learning method to perform the final ASD automatic diagnostic task. Our proposed method is evaluated on 949 subjects (including 419 subjects with ASD and 530 subjects with typical control (TC)) from the Autism Brain Imaging Data Exchange (ABIDE). Experimental results show that our proposed method achieves an accuracy of 75.86% and an area under the receiver operating characteristic curve (AUC) of 0.8314 for automatic diagnosis of ASD. In addition, compared with some methods published in recent years, our proposed method obtains the best performance of ASD diagnosis. Overall, our proposed method is effective and promising for automatic diagnosis of ASD in clinical practice. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:346 / 353
页数:8
相关论文
共 50 条
[1]  
A.P. Association, 2013, DIAGNOSTIC STAT MANU
[2]   Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example [J].
Abraham, Alexandre ;
Milham, Michael P. ;
Di Martino, Adriana ;
Craddock, R. Cameron ;
Samaras, Dimitris ;
Thirion, Bertrand ;
Varoquaux, Gael .
NEUROIMAGE, 2017, 147 :736-745
[3]   Transcriptomics Signature from Next-Generation Sequencing Data Reveals New Transcriptomic Biomarkers Related to Prostate Cancer [J].
Alkhateeb, Abedalrhman ;
Rezaeian, Iman ;
Singireddy, Siva ;
Cavallo-Medved, Dora ;
Porter, Lisa A. ;
Rueda, Luis .
CANCER INFORMATICS, 2019, 18
[4]   Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity-A multi-center study [J].
Chen, Heng ;
Duan, Xujun ;
Liu, Feng ;
Lu, Fengmei ;
Ma, Xujing ;
Zhang, Youxue ;
Uddin, Lucina Q. ;
Chen, Huafu .
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2016, 64 :1-9
[5]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[6]  
Chu F, 2005, STUD FUZZ SOFT COMP, V177, P343
[7]  
Craddock C, FRONT NEUROINFORM, V42
[8]  
Defferrard M, 2016, ADV NEUR IN, V29
[9]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[10]   Gene selection for cancer classification using support vector machines [J].
Guyon, I ;
Weston, J ;
Barnhill, S ;
Vapnik, V .
MACHINE LEARNING, 2002, 46 (1-3) :389-422