The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide

被引:86
作者
Guo, J [1 ]
Lemire, BD [1 ]
机构
[1] Univ Alberta, Dept Biochem, Canadian Inst Hlth, Membrane Prot Res Grp, Edmonton, AB T6G 2H7, Canada
关键词
D O I
10.1074/jbc.M306312200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mitochondrial succinate dehydrogenase (SDH) is a tetrameric iron-sulfur flavoprotein of the Krebs cycle and of the respiratory chain. A number of mutations in human SDH genes are responsible for the development of paragangliomas, cancers of the head and neck region. The mev-1 mutation in the Caenorhabditis elegans gene encoding the homolog of the SDHC subunit results in premature aging and hypersensitivity to oxidative stress. It also increases the production of superoxide radicals by the enzyme. In this work, we used the yeast succinate dehydrogenase to investigate the molecular and catalytic effects of paraganglioma- and mev-1-like mutations. We mutated Pro-190 of the yeast Sdh2p subunit to Gln (P190Q) and recreated the C. elegans mev-1 mutation by converting Ser-94 in the Sdh3p subunit into a glutamate residue (S94E). The P190Q and S94E mutants have reduced succinate-ubiquinone oxidoreductase activities and are hypersensitive to oxygen and paraquat. Although the mutant enzymes have lower turnover numbers for ubiquinol reduction, larger fractions of the remaining activities are diverted toward superoxide production. The P190Q and S94E mutations are located near the proximal ubiquinone-binding site, suggesting that the superoxide radicals may originate from a ubisemiquinone intermediate formed at this site during the catalytic cycle. We suggest that certain mutations in SDH can make it a significant source of superoxide production in mitochondria, which may contribute directly to disease progression. Our data also challenge the dogma that superoxide production by SDH is a flavin-mediated event rather than a quinone-mediated one.
引用
收藏
页码:47629 / 47635
页数:7
相关论文
共 50 条
[1]  
Ackrell B A, 1978, Methods Enzymol, V53, P466
[2]  
Ackrell B.A. C., 1992, CHEM BIOCH FLAVOENZY, VIII, P229
[3]   Cytopathies involving mitochondrial complex II [J].
Ackrell, Brian A. C. .
MOLECULAR ASPECTS OF MEDICINE, 2002, 23 (05) :369-384
[4]   Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma [J].
Astuti, D ;
Latif, F ;
Dallol, A ;
Dahia, PLM ;
Douglas, F ;
George, E ;
Sköldberg, F ;
Husebye, ES ;
Eng, C ;
Maher, ER .
AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 69 (01) :49-54
[5]   Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae [J].
Bakker, BM ;
Overkamp, KM ;
van Maris, AJA ;
Kötter, P ;
Luttik, MAH ;
van Dijken, JP ;
Pronk, JT .
FEMS MICROBIOLOGY REVIEWS, 2001, 25 (01) :15-37
[6]   Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas [J].
Baysal, BE ;
Willett-Brozick, JE ;
Lawrence, EC ;
Drovdlic, CM ;
Savul, SA ;
McLeod, DR ;
Yee, HA ;
Brackmann, DE ;
Slattery, WH ;
Myers, EN ;
Ferrell, RE ;
Rubinstein, WS .
JOURNAL OF MEDICAL GENETICS, 2002, 39 (03) :178-183
[7]   Hereditary paraganglioma target's diverse paraganglia [J].
Baysal, BE .
JOURNAL OF MEDICAL GENETICS, 2002, 39 (09) :617-622
[8]   Animal models of Parkinson's disease [J].
Betarbet, R ;
Sherer, TB ;
Greenamyre, JT .
BIOESSAYS, 2002, 24 (04) :308-318
[9]   MUTATION OF A NUCLEAR SUCCINATE-DEHYDROGENASE GENE RESULTS IN MITOCHONDRIAL RESPIRATORY-CHAIN DEFICIENCY [J].
BOURGERON, T ;
RUSTIN, P ;
CHRETIEN, D ;
BIRCHMACHIN, M ;
BOURGEOIS, M ;
VIEGASPEQUIGNOT, E ;
MUNNICH, A ;
ROTIG, A .
NATURE GENETICS, 1995, 11 (02) :144-149
[10]   The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc(1) complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain [J].
Brasseur, G ;
Tron, P ;
Dujardin, G ;
Slonimski, PP ;
BrivetChevillotte, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 246 (01) :103-111