Deoxyribonucleic Acid Sensitive Graphene Field-Effect Transistors

被引:0
作者
Hwang, Jongseung [1 ,2 ]
Kim, Heetae [1 ,2 ]
Lee, Jaehyun [1 ,3 ,4 ]
Whang, Dongmok [1 ,3 ,4 ]
Hwang, Sungwoo [1 ,2 ]
机构
[1] Korea Univ, Res Ctr Time Domain Nanofunct Devices, Seoul 136701, South Korea
[2] Korea Univ, Sch Elect Engn, Seoul 136701, South Korea
[3] Sungkyunkwan Univ, SKK Adv Inst Nanotechnol, Suwon 440746, South Korea
[4] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea
来源
IEICE TRANSACTIONS ON ELECTRONICS | 2011年 / E94C卷 / 05期
关键词
graphene; chemical vapour deposition; transport; field-effect transistor; DNA; EPITAXIAL GRAPHENE; DNA;
D O I
10.1587/transele.E94.C.826
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have investigated the effect of deoxyribonucleic acid (DNA) adsorption on a graphene field-effect-transistor (FET) device. We have used graphene which is grown on a Ni substrate by chemical vapour deposition. The Raman spectra of our graphene indicate its high quality, and also show that it consists of only a few layers. The current-voltage characteristics of our bare graphene strip FET show a hole conduction behavior, and the gate sensitivity of 0.0034 mu A/V, which is reasonable with the size of the strip (5 x 10 mu m(2)). After the adsorption of 30 base pairs single-stranded poly (dT) DNA molecules, the conductance and gate operation of the graphene FET exhibit almost 11% and 18% decrease from those of the bare graphene FET device. The observed change may suggest a large sensitivity for a small enough (nm size) graphene strip with larger semiconducting property.
引用
收藏
页码:826 / 829
页数:4
相关论文
共 50 条
  • [41] Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing
    Sun, Mingyuan
    Wang, Shuai
    Liang, Yanbo
    Wang, Chao
    Zhang, Yunhong
    Liu, Hong
    Zhang, Yu
    Han, Lin
    NANO-MICRO LETTERS, 2025, 17 (01)
  • [42] Epitaxial graphene field-effect transistors on silicon substrates
    Kang, Hyun-Chul
    Karasawa, Hiromi
    Miyamoto, Yu
    Handa, Hiroyuki
    Suemitsu, Tetsuya
    Suemitsu, Maki
    Otsuji, Taiichi
    SOLID-STATE ELECTRONICS, 2010, 54 (09) : 1010 - 1014
  • [43] Ambipolar to Unipolar Conversion in Graphene Field-Effect Transistors
    Li, Hong
    Zhang, Qing
    Liu, Chao
    Xu, Shouheng
    Gao, Pingqi
    ACS NANO, 2011, 5 (04) : 3198 - 3203
  • [44] Terahertz Laser Combs in Graphene Field-Effect Transistors
    Cosme, Pedro
    Tercas, Hugo
    ACS PHOTONICS, 2020, 7 (06): : 1375 - 1381
  • [45] Graphene-on-Silicon Hybrid Field-Effect Transistors
    Fomin, Mykola
    Pasadas, Francisco.
    Marin, Enrique G.
    Medina-Rull, Alberto
    Ruiz, Francisco. G.
    Godoy, Andres.
    Zadorozhnyi, Ihor
    Beltramo, Guillermo
    Brings, Fabian
    Vitusevich, Svetlana
    Offenhaeusser, Andreas
    Kireev, Dmitry
    ADVANCED ELECTRONIC MATERIALS, 2023, 9 (05)
  • [46] Electrical and Noise Characteristics of Graphene Field-Effect Transistors
    Shur, M.
    Rumyantsev, S.
    Liu, G.
    Balandin, A. A.
    2011 21ST INTERNATIONAL CONFERENCE ON NOISE AND FLUCTUATIONS (ICNF), 2011, : 145 - 149
  • [47] Geometrical magnetoresistance effect and mobility in graphene field-effect transistors
    Harrysson Rodrigues, Isabel
    Generalov, Andrey
    Soikkeli, Miika
    Murros, Anton
    Arpiainen, Sanna
    Vorobiev, Andrei
    APPLIED PHYSICS LETTERS, 2022, 121 (01)
  • [48] Electronic spin transport in graphene field-effect transistors
    Popinciuc, M.
    Jozsa, C.
    Zomer, P. J.
    Tombros, N.
    Veligura, A.
    Jonkman, H. T.
    van Wees, B. J.
    PHYSICAL REVIEW B, 2009, 80 (21)
  • [49] Fabrication of SWCNT-Graphene Field-Effect Transistors
    Xie, Shuangxi
    Jiao, Niandong
    Tung, Steve
    Liu, Lianqing
    MICROMACHINES, 2015, 6 (09): : 1317 - 1330
  • [50] Flexible Graphene Field-Effect Transistors for Microwave Electronics
    Meric, Inanc
    Petrone, Nicholas
    Hone, James
    Shepard, Kenneth L.
    2013 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (IMS), 2013,