Deoxyribonucleic Acid Sensitive Graphene Field-Effect Transistors

被引:0
作者
Hwang, Jongseung [1 ,2 ]
Kim, Heetae [1 ,2 ]
Lee, Jaehyun [1 ,3 ,4 ]
Whang, Dongmok [1 ,3 ,4 ]
Hwang, Sungwoo [1 ,2 ]
机构
[1] Korea Univ, Res Ctr Time Domain Nanofunct Devices, Seoul 136701, South Korea
[2] Korea Univ, Sch Elect Engn, Seoul 136701, South Korea
[3] Sungkyunkwan Univ, SKK Adv Inst Nanotechnol, Suwon 440746, South Korea
[4] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea
来源
IEICE TRANSACTIONS ON ELECTRONICS | 2011年 / E94C卷 / 05期
关键词
graphene; chemical vapour deposition; transport; field-effect transistor; DNA; EPITAXIAL GRAPHENE; DNA;
D O I
10.1587/transele.E94.C.826
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have investigated the effect of deoxyribonucleic acid (DNA) adsorption on a graphene field-effect-transistor (FET) device. We have used graphene which is grown on a Ni substrate by chemical vapour deposition. The Raman spectra of our graphene indicate its high quality, and also show that it consists of only a few layers. The current-voltage characteristics of our bare graphene strip FET show a hole conduction behavior, and the gate sensitivity of 0.0034 mu A/V, which is reasonable with the size of the strip (5 x 10 mu m(2)). After the adsorption of 30 base pairs single-stranded poly (dT) DNA molecules, the conductance and gate operation of the graphene FET exhibit almost 11% and 18% decrease from those of the bare graphene FET device. The observed change may suggest a large sensitivity for a small enough (nm size) graphene strip with larger semiconducting property.
引用
收藏
页码:826 / 829
页数:4
相关论文
共 50 条
  • [1] Graphene field-effect transistors
    Reddy, Dharmendar
    Register, Leonard F.
    Carpenter, Gary D.
    Banerjee, Sanjay K.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (31)
  • [2] A review for compact model of graphene field-effect transistors
    Lu, Nianduan
    Wang, Lingfei
    Li, Ling
    Liu, Ming
    CHINESE PHYSICS B, 2017, 26 (03)
  • [3] Direct deoxyribonucleic acid detection using ion-sensitive field-effect transistors based on peptide nucleic acid
    Uno, T
    Ohtake, T
    Tabata, H
    Kawai, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2004, 43 (12B): : L1584 - L1587
  • [4] Graphene field-effect transistors: the road to bioelectronics
    Donnelly, Matthew
    Mao, Dacheng
    Park, Junsu
    Xu, Guangyu
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (49)
  • [5] Supramolecular Chemistry on Graphene Field-Effect Transistors
    Zhang, Xiaoyan
    Huisman, Everardus H.
    Gurram, Mallikarjuna
    Browne, Wesley R.
    van Wees, Bart J.
    Feringa, Ben L.
    SMALL, 2014, 10 (09) : 1735 - 1740
  • [6] The effect of traps on the performance of graphene field-effect transistors
    Zhu, J.
    Jhaveri, R.
    Woo, J. C. S.
    APPLIED PHYSICS LETTERS, 2010, 96 (19)
  • [7] Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization
    Mohan, Hari Krishna Salila Vijayalal
    An, Jianing
    Zhang, Yani
    Wong, Chee How
    Zheng, Lianxi
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2014, 5 : 2081 - 2091
  • [8] Graphene-based field-effect transistors for biosensing: where is the field heading to?
    Szunerits, Sabine
    Rodrigues, Teresa
    Bagale, Rupali
    Happy, Henri
    Boukherroub, Rabah
    Knoll, Wolfgang
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2024, 416 (09) : 2137 - 2150
  • [9] TCAD Simulations of graphene field-effect transistors based on the quantum capacitance effect
    Hafsi, Bilel
    Boubaker, Aimen
    Ismail, Naoufel
    Kalboussi, Adel
    Lmimouni, Kamal
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 67 (07) : 1201 - 1207
  • [10] Graphene-Graphite Oxide Field-Effect Transistors
    Standley, Brian
    Mendez, Anthony
    Schmidgall, Emma
    Bockrath, Marc
    NANO LETTERS, 2012, 12 (03) : 1165 - 1169