Privacy-preserving distributed k-anonymity

被引:0
作者
Jiang, W [1 ]
Clifton, C [1 ]
机构
[1] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
来源
DATA AND APPLICATIONS SECURITY XIX, PROCEEDINGS | 2005年 / 3654卷
关键词
k-anonymity; privacy; security;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
k-anonymity provides a measure of privacy protection by preventing re-identification of data to fewer than a group of k data items. While algorithms exist for producing k-anonymous data, the model has been that of a single source wanting to publish data. This paper presents a k-anonymity protocol when the data is vertically partitioned between sites. A key contribution is a proof that the protocol preserves k-anonymity between the sites: While one site may have individually identifiable data, it learns nothing that violates k-anonymity with respect to the data at the other site. This is a fundamentally different distributed privacy definition than that of Secure Multiparty Computation, and it provides a better match with both ethical and legal views of privacy.
引用
收藏
页码:166 / 177
页数:12
相关论文
共 50 条
  • [41] A K-Anonymity Based Schema for Location Privacy Preservation
    Fei, Fan
    Li, Shu
    Dai, Haipeng
    Hu, Chunhua
    Dou, Wanchun
    Ni, Qiang
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2019, 4 (02): : 156 - 167
  • [42] Study on Privacy Protection Algorithm Based on K-Anonymity
    Zhao FeiFei
    Dong LiFeng
    Wang Kun
    Li Yang
    2011 AASRI CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRY APPLICATION (AASRI-AIIA 2011), VOL 1, 2011, : 312 - 315
  • [43] Beyond k-Anonymity: A Decision Theoretic Framework for Assessing Privacy Risk
    Lebanon, Guy
    Scannapieco, Monica
    Fouad, Mohamed R.
    Bertino, Elisa
    TRANSACTIONS ON DATA PRIVACY, 2009, 2 (03) : 153 - 183
  • [44] Privacy in manifolds: Combining k-anonymity with differential privacy on Frechet means
    Garg, Sonakshi
    Torra, Vicenc
    COMPUTERS & SECURITY, 2024, 144
  • [45] A Personalized k-Anonymity with Fake Position Generation for Location Privacy Protection
    Luo, Zhi
    Huang, Xiaohong
    FRONTIERS IN INTERNET TECHNOLOGIES, 2015, 502 : 46 - 55
  • [46] A New Anonymity Model for Privacy-Preserving Data Publishing
    Huang Xuezhen
    Liu Jiqiang
    Han Zhen
    Yang Jun
    CHINA COMMUNICATIONS, 2014, 11 (09) : 47 - 59
  • [47] Distributed Aggregate Privacy-Preserving Authentication in VANETs
    Zhang, Lei
    Wu, Qianhong
    Domingo-Ferrer, Josep
    Qin, Bo
    Hu, Chuanyan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2017, 18 (03) : 516 - 526
  • [48] Scalable l-Diversity: An Extension to Scalable k-Anonymity for Privacy Preserving Big Data Publishing
    Rao, Udai Pratap
    Mehta, Brijesh B.
    Kumar, Nikhil
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND WEB ENGINEERING, 2019, 14 (02) : 27 - 40
  • [49] Mastering data privacy: leveraging K-anonymity for robust health data sharing
    Karagiannis, Stylianos
    Ntantogian, Christoforos
    Magkos, Emmanouil
    Tsohou, Aggeliki
    Ribeiro, Luis Landeiro
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2024, 23 (03) : 2189 - 2201
  • [50] Providing k-anonymity and revocation in ubiquitous VANETs
    Caballero-Gil, Candido
    Molina-Gil, Jezabel
    Hernandez-Serrano, Juan
    Leon, Olga
    Soriano-Ibanez, Miguel
    AD HOC NETWORKS, 2016, 36 : 482 - 494