Global regularity of density patch for the 3D inhomogeneous Navier-Stokes equations

被引:1
作者
Chen, Qionglei [1 ]
Li, Yatao [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2020年 / 71卷 / 02期
基金
美国国家科学基金会;
关键词
Inhomogeneous Navier-Stokes equations; Density patch; Singular kernels; FLUIDS; FLOW;
D O I
10.1007/s00033-020-1263-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerning with the regularity propagation of density patches for the 3D inhomogeneous incompressible Navier-Stokes equations. By careful time-weighted energy estimates, Stokes estimates and the singular integral operators, we prove that the 3D density patches preserve the Ck,gamma(k=1,2) regularity for the initial interface given by rho 0(x)=eta 11 omega 0+eta 21 omega 0c. In particular, we do not need the smallness assumption on |eta 1-eta 2|.
引用
收藏
页数:18
相关论文
共 25 条
[1]  
Abidi H, 2007, REV MAT IBEROAM, V23, P537
[2]  
Antontsev S.N., 1990, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, VVolume 22
[3]   GLOBAL REGULARITY FOR VORTEX PATCHES [J].
BERTOZZI, AL ;
CONSTANTIN, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :19-28
[4]   MOVEMENT OF PARTICLES OF A 2-DIMENSIONAL INCOMPRESSIBLE PERFECT FLUID [J].
CHEMIN, JY .
INVENTIONES MATHEMATICAE, 1991, 103 (03) :599-629
[5]  
CHEMIN JY, 1993, ANN SCI ECOLE NORM S, V26, P517
[6]   Fujita-Kato theorem for the 3-D inhomogeneous Navier-Stokes equations [J].
Chen, Dongxiang ;
Mang, Zhifei ;
Zhao, Weiren .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (01) :738-761
[7]   Density-dependent incompressible viscous fluids in critical spaces [J].
Danchin, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1311-1334
[8]  
Danchin R, 2017, J ECOLE POLYTECH-MAT, V4, P781, DOI 10.5802/jep.56
[9]   A Lagrangian Approach for the Incompressible Navier-Stokes Equations with Variable Density [J].
Danchin, Raphael ;
Mucha, Piotr Boguslaw .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (10) :1458-1480
[10]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547