Biosorption of Cr(VI) ions from aqueous solutions: Kinetics, equilibrium, thermodynamics and desorption studies

被引:223
作者
Singha, Biswajit [1 ]
Das, Sudip Kumar [1 ]
机构
[1] Univ Calcutta, Dept Chem Engn, Kolkata 700009, W Bengal, India
关键词
Natural adsorbents; Rate kinetics; Mass transfer coefficient; Sorption energy; Diffusivity; HEXAVALENT CHROMIUM; METAL-IONS; AGRICULTURAL WASTE; ACTIVATED CARBON; ADSORPTION-KINETICS; INDUSTRIAL-WASTE; REMOVAL; SORPTION; SAWDUST; GASES;
D O I
10.1016/j.colsurfb.2011.01.004
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Cr(VI) is a major water pollutant from industrial effluent whose concentration is to be reduced within the permissible limit. Present study reports a systematic evaluation of six different natural adsorbents for the removal of Cr(VI) from aqueous solutions in batch process. The adsorption kinetic data were best described by pseudo-second order model. The values of mass transfer coefficient for Cr(VI) adsorption indicated that the velocity of the adsorbate transport from the bulk to the solid phase was quite fast. The effective diffusivity of Cr(VI) removal for all the adsorbents were of the order of 10(-10) m(2)/s which suggested chemisorption of the process. The adsorption process was jointly controlled by film diffusion and intraparticle diffusion. Maximum monolayer adsorption capacities onto the natural adsorbents used were comparable to the other natural adsorbents used by other researchers. The thermodynamic studies and sorption energy calculation using Dubinin-Radushkevich isotherm model indicated that the adsorption processes were endothermic and chemical in nature. FT-IR studies were carried out to understand the type of functional groups responsible for Cr(VI) binding process. Desorption study was carried out with different concentration of NaOH solutions. Application study was carried out using electroplating industrial wastewater. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 232
页数:12
相关论文
共 66 条
[1]   The removal of chromium(VI) from aqueous solutions by Fagus orientalis L. [J].
Acar, FN ;
Malkoc, E .
BIORESOURCE TECHNOLOGY, 2004, 94 (01) :13-15
[2]  
[Anonymous], 1990, EPA625590025
[3]  
APHA (AMERICAN PUBLIC HEALTH ASSOCIATION), 1995, Standard Methods for the Examination of Water and Waste Water
[4]   Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics [J].
Argun, Mehmet Emin ;
Dursun, Sukru ;
Ozdemir, Celalettin ;
Karatas, Mustafa .
JOURNAL OF HAZARDOUS MATERIALS, 2007, 141 (01) :77-85
[5]  
AYOMA M, 1999, REMOVAL HEXAVALENT C, V53, P365
[6]   Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan [J].
Babel, S ;
Kurniawan, TA .
CHEMOSPHERE, 2004, 54 (07) :951-967
[7]   Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: A case study of rice husk [J].
Bansal, Manjeet ;
Garg, Umesh ;
Singh, Diwan ;
Garg, V. K. .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 162 (01) :312-320
[8]   A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes' carbons [J].
Bansal, Manjeet ;
Singh, Diwan ;
Garg, V. K. .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 171 (1-3) :83-92
[9]   Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust [J].
Baral, Saroj S. ;
Das, Surendra N. ;
Rath, Pradip .
BIOCHEMICAL ENGINEERING JOURNAL, 2006, 31 (03) :216-222
[10]   Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents [J].
Bhattacharya, A. K. ;
Naiya, T. K. ;
Mandal, S. N. ;
Das, S. K. .
CHEMICAL ENGINEERING JOURNAL, 2008, 137 (03) :529-541