A Study on Data Input and Output Performance Comparison of MongoDB and PostgreSQL in the Big Data Environment

被引:28
|
作者
Jung, Min-Gyue [1 ]
Youn, Seon-A
Bae, Jayon
Choi, Yong-Lak
机构
[1] Soongsil Univ, Grad Sch Informat Sci, 369 Sangdo Ro, Seoul, South Korea
关键词
D O I
10.1109/DTA.2015.14
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Due to advancement of social network and popularization of mobile devices, the existing relational database management system(RDBMS)'s processing of massive data has become an issue. NoSQL is a database management system which makes processing of massive and/or unstructured data easier, and many companies today tend to start a project using NoSQL. Moreover, converting the RDBMS of current systems to NoSQL has become a trend. This study assesses the performance differences between RDBMS and NoSQL. The optimal design for enhanced functionality when using NoSQL has been described as well. In this study, PostgreSQL and MongoDB have been selected to represent RDBMS and NoSQL respectively, for comparative analysis.
引用
收藏
页码:14 / 17
页数:4
相关论文
共 50 条
  • [1] Performance Analysis of Neo4j, MongoDB, and PostgreSQL on 2019 National Election Big Data Management Database
    Wiseso, Linggis Galih
    Imrona, Mahmud
    Alamsyah, Andry
    2020 6TH INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0: TOWARDS INNOVATION IN DISASTER MANAGEMENT, 2020, : 91 - 96
  • [2] MongoDB Vs PostgreSQL: A comparative study on performance aspects
    Antonios Makris
    Konstantinos Tserpes
    Giannis Spiliopoulos
    Dimitrios Zissis
    Dimosthenis Anagnostopoulos
    GeoInformatica, 2021, 25 : 243 - 268
  • [3] MongoDB Vs PostgreSQL: A comparative study on performance aspects
    Makris, Antonios
    Tserpes, Konstantinos
    Spiliopoulos, Giannis
    Zissis, Dimitrios
    Anagnostopoulosl, Dimosthenis
    GEOINFORMATICA, 2021, 25 (02) : 243 - 268
  • [4] Correction to: MongoDB Vs PostgreSQL: a comparative study on performance aspects
    Antonios Makris
    Konstantinos Tserpes
    Giannis Spiliopoulos
    Dimitrios Zissis
    Dimosthenis Anagnostopoulos
    GeoInformatica, 2021, 25 : 241 - 242
  • [5] Big Data Application: Study and Archival of Mental Health Data, using MongoDB
    Dhaka, Priyanka
    Johari, Rahul
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, : 3228 - 3232
  • [6] Big Data Tools: Haddop, MongoDB and Weka
    Jaraba Navas, Paula Catalina
    Guacaneme Parra, Yesid Camilo
    Rodriguez Molano, Jose Ignacio
    DATA MINING AND BIG DATA, DMBD 2016, 2016, 9714 : 449 - 456
  • [7] A Comparative Study of MongoDB and Document-Based MySQL for Big Data Application Data Management
    Gyorodi, Cornelia A.
    Dumse-Burescu, Diana V.
    Zmaranda, Doina R.
    Gyorodi, Robert S.
    BIG DATA AND COGNITIVE COMPUTING, 2022, 6 (02)
  • [8] MongoDB improves big data analysis performance on electric health record system
    Xu, Wei
    Zhou, Zhonghua
    Zhou, Hong
    Zhang, W.
    Xie, Jiang
    Communications in Computer and Information Science, 2014, 461 : 350 - 357
  • [9] The Application of Big Data using MongoDB: Case Study with SCeLE Fasilkom UI Forum Data
    Rahartomo, Argianto
    Aji, Rizal Fathoni
    Ruldeviyani, Yova
    2016 INTERNATIONAL WORKSHOP ON BIG DATA AND INFORMATION SECURITY (IWBIS), 2016, : 51 - 56
  • [10] Performance evaluation of SQL and MongoDB databases for big e-commerce data
    Aboutorabi, Seyyed Hamid
    Rezapour, Mehdi
    Moradi, Milad
    Ghadiri, Nasser
    CSSE 2015 20TH INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING, 2015,