Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel

被引:21
作者
Coronel-Escamilla, Antonio [1 ]
Francisco Gomez-Aguilar, Jose [2 ]
Baleanu, Dumitru [3 ,4 ]
Fabricio Escobar-Jimenez, Ricardo [1 ]
Hugo Olivares-Peregrino, Victor [1 ]
Abundez-Pliego, Arturo [1 ]
机构
[1] Tecnol Nacl Mexico, Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Tecnol Nacl Mexico, CONACYT Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, TR-0630 Ankara, Turkey
[4] Inst Space Sci, POB MG-23, Magurele 76900, Romania
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2016年
关键词
Pais-Uhlenbeck oscillator; two-electric pendulum; Caputo-Fabrizio operator; Atangana-Baleanu-Caputo operator; Crank-Nicholson scheme; Euler-Lagrange formalism; MODEL; DERIVATIVES; FORMALISM;
D O I
10.1186/s13662-016-1001-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents alternative representations to traditional calculus of the Euler-Lagrangian equations, in the alternative representations these equations contain fractional operators. In this work, we consider two problems, the Lagrangian of a Pais-Uhlenbeck oscillator and the Hamiltonian of a two-electric pendulum model where the fractional operators have a regular kernel. The Euler-Lagrange formalism was used to obtain the dynamic model based on the Caputo-Fabrizio operator and the new fractional operator based on the Mittag-Leffler function. The simulations showed the effectiveness of these two representations for different values of gamma.
引用
收藏
页数:17
相关论文
共 46 条
  • [21] Caputo M., 2016, Prog. Fract. Differ. Appl., V2, P1, DOI DOI 10.18576/PFDA/020101
  • [22] Caputo M., 2015, Progress Fract. Diff. Appl, V1, P73, DOI DOI 10.12785/PFDA/010201
  • [23] Triple pendulum model involving fractional derivatives with different kernels
    Coronel-Escamilla, A.
    Gomez-Aguilar, J. F.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Guerrero-Ramirez, G. V.
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 91 : 248 - 261
  • [24] Fractional Euler-Lagrange Equations Applied to Oscillatory Systems
    David, Sergio Adriani
    Valentim, Carlos Alberto, Jr.
    [J]. MATHEMATICS, 2015, 3 (02): : 258 - 272
  • [25] Modeling of a Mass-Spring-Damper System by Fractional Derivatives with and without a Singular Kernel
    Francisco Gomez-Aguilar, Jose
    Yepez-Martinez, Huitzilin
    Calderon-Ramon, Celia
    Cruz-Orduna, Ines
    Fabricio Escobar-Jimenez, Ricardo
    Hugo Olivares-Peregrino, Victor
    [J]. ENTROPY, 2015, 17 (09) : 6289 - 6303
  • [26] On dynamical realizations of l-conformal Galilei and Newton-Hooke algebras
    Galajinsky, Anton
    Masterov, Ivan
    [J]. NUCLEAR PHYSICS B, 2015, 896 : 244 - 254
  • [27] Gómez Aguilar JF, 2014, P ROMANIAN ACAD A, V15, P27
  • [28] Modeling diffusive transport with a fractional derivative without singular kernel
    Gomez-Aguilar, J. F.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Reyes-Reyes, J.
    Adam-Medina, M.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 447 : 467 - 481
  • [29] Modeling and simulation of the fractional space-time diffusion equation
    Gomez-Aguilar, J. F.
    Miranda-Hernandez, M.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Baleanu, D.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 30 (1-3) : 115 - 127
  • [30] Gomez-Aguilar JF, 2014, REV MEX FIS, V60, P32