Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel

被引:21
作者
Coronel-Escamilla, Antonio [1 ]
Francisco Gomez-Aguilar, Jose [2 ]
Baleanu, Dumitru [3 ,4 ]
Fabricio Escobar-Jimenez, Ricardo [1 ]
Hugo Olivares-Peregrino, Victor [1 ]
Abundez-Pliego, Arturo [1 ]
机构
[1] Tecnol Nacl Mexico, Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Tecnol Nacl Mexico, CONACYT Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, TR-0630 Ankara, Turkey
[4] Inst Space Sci, POB MG-23, Magurele 76900, Romania
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2016年
关键词
Pais-Uhlenbeck oscillator; two-electric pendulum; Caputo-Fabrizio operator; Atangana-Baleanu-Caputo operator; Crank-Nicholson scheme; Euler-Lagrange formalism; MODEL; DERIVATIVES; FORMALISM;
D O I
10.1186/s13662-016-1001-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents alternative representations to traditional calculus of the Euler-Lagrangian equations, in the alternative representations these equations contain fractional operators. In this work, we consider two problems, the Lagrangian of a Pais-Uhlenbeck oscillator and the Hamiltonian of a two-electric pendulum model where the fractional operators have a regular kernel. The Euler-Lagrange formalism was used to obtain the dynamic model based on the Caputo-Fabrizio operator and the new fractional operator based on the Mittag-Leffler function. The simulations showed the effectiveness of these two representations for different values of gamma.
引用
收藏
页数:17
相关论文
共 46 条
[21]  
Caputo M., 2016, Prog. Fract. Differ. Appl., V2, P1, DOI DOI 10.18576/PFDA/020101
[22]  
Caputo M., 2015, Progress Fract. Diff. Appl, V1, P73, DOI DOI 10.12785/PFDA/010201
[23]   Triple pendulum model involving fractional derivatives with different kernels [J].
Coronel-Escamilla, A. ;
Gomez-Aguilar, J. F. ;
Lopez-Lopez, M. G. ;
Alvarado-Martinez, V. M. ;
Guerrero-Ramirez, G. V. .
CHAOS SOLITONS & FRACTALS, 2016, 91 :248-261
[24]   Fractional Euler-Lagrange Equations Applied to Oscillatory Systems [J].
David, Sergio Adriani ;
Valentim, Carlos Alberto, Jr. .
MATHEMATICS, 2015, 3 (02) :258-272
[25]   Modeling of a Mass-Spring-Damper System by Fractional Derivatives with and without a Singular Kernel [J].
Francisco Gomez-Aguilar, Jose ;
Yepez-Martinez, Huitzilin ;
Calderon-Ramon, Celia ;
Cruz-Orduna, Ines ;
Fabricio Escobar-Jimenez, Ricardo ;
Hugo Olivares-Peregrino, Victor .
ENTROPY, 2015, 17 (09) :6289-6303
[26]   On dynamical realizations of l-conformal Galilei and Newton-Hooke algebras [J].
Galajinsky, Anton ;
Masterov, Ivan .
NUCLEAR PHYSICS B, 2015, 896 :244-254
[27]  
Gómez Aguilar JF, 2014, P ROMANIAN ACAD A, V15, P27
[28]   Modeling diffusive transport with a fractional derivative without singular kernel [J].
Gomez-Aguilar, J. F. ;
Lopez-Lopez, M. G. ;
Alvarado-Martinez, V. M. ;
Reyes-Reyes, J. ;
Adam-Medina, M. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 447 :467-481
[29]   Modeling and simulation of the fractional space-time diffusion equation [J].
Gomez-Aguilar, J. F. ;
Miranda-Hernandez, M. ;
Lopez-Lopez, M. G. ;
Alvarado-Martinez, V. M. ;
Baleanu, D. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 30 (1-3) :115-127
[30]  
Gomez-Aguilar JF, 2014, REV MEX FIS, V60, P32