Beyond quenching for degenerate singular semilinear parabolic equations

被引:2
作者
Chan, CY [1 ]
Yang, J [1 ]
机构
[1] Univ Louisiana, Dept Math, Lafayette, LA 70504 USA
关键词
beyond quenching; weak solution; omega-limit set; weak steady-state solution;
D O I
10.1016/S0096-3003(99)00277-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let q be a nonzero real constant greater than -1, D = (0, a), Ohm = D x (0, infinity), (D) over bar and <(<Ohm>)over bar> be their respective closures, Lu = x(q)u(t) - u(xx), and chi (s) = {(1 if u is an element ofS,)(0 if u is not an element ofS) be the characteristic function of the set S. Beyond quenching is studied for the problem, u(x,t) is an element of C-2,C-1 ({u < c} boolean AND Ohm) boolean AND C-1,C-0(Ohm) boolean AND C(<(<Ohm>)over bar>), u less than or equal to c in Ohm, and that every element of the omega -limit set obtained from the minimal weak solution (among solutions obtained via regularization) is a weak steady-state solution. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 9 条
[1]   Global existence of solutions for degenerate semilinear parabolic problems [J].
Chan, CY ;
Liu, HT .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (04) :617-628
[2]   BEYOND QUENCHING FOR SINGULAR REACTION-DIFFUSION PROBLEMS [J].
CHAN, CY ;
KE, L .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1994, 17 (01) :1-9
[3]   SOLUTION PROFILES BEYOND QUENCHING FOR DEGENERATE REACTION-DIFFUSION PROBLEMS [J].
CHAN, CY ;
KONG, PC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (12) :1755-1763
[4]  
CHAN CY, 1994, APPL ANAL, V54, P17
[5]  
Dunford N., 1963, LINEAR OPERATORS
[6]   STABILIZATION OF SOLUTIONS OF WEAKLY SINGULAR QUENCHING PROBLEMS [J].
FILA, M ;
LEVINE, HA ;
VAZQUEZ, JL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (02) :555-559
[7]  
Ladde GS., 1985, MONOTONE ITERATIVE T
[8]  
Ladyzenskaja O. A., 1968, Linear and Quasi-linear Equation of Parabolic Type
[9]  
Phillips D., 1987, Applicable Analysis, V24, P253, DOI 10.1080/00036818708839668