Blocking sets of tangent and external lines to an elliptic quadric in PG(3,q)

被引:1
作者
De Bruyn, Bart [1 ]
Pradhan, Puspendu [2 ,3 ]
Sahoo, Binod Kumar [2 ,3 ]
机构
[1] Univ Ghent, Dept Math Algebra & Geometry, Krijgslaan 281 S25, B-9000 Ghent, Belgium
[2] Natl Inst Sci Educ & Res NISER, Sch Math Sci, Khurja 752050, Odisha, India
[3] Homi Bhabha Natl Inst HBNI, Training Sch Complex, Mumbai 400094, Maharashtra, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2021年 / 131卷 / 02期
关键词
Projective space; blocking set; irreducible conic; elliptic quadric; ovoid; PG(2; Q);
D O I
10.1007/s12044-021-00633-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider an elliptic quadric Q(-) (3, q) in PG(3, q). Let E and T denote the set of all lines of PG(3, q) which meet Q(-) (3, q) in 0 and 1 point, respectively. In this paper, we characterize the minimum size (T boolean OR E)-blocking sets and give a different proof for the characterization of minimum size E-blocking sets in PG(3, q) which works for all q. We also discuss whether the main results of this paper (Theorems 1.6 and 1.7) can be extended to ovoids in PG(3, q).
引用
收藏
页数:16
相关论文
共 47 条