A new insight for real-time wastewater quality prediction using hybridized kernel-based extreme learning machines with advanced optimization algorithms

被引:25
作者
Alavi, Javad [1 ]
Ewees, Ahmed A. [2 ]
Ansari, Sepideh [1 ]
Shahid, Shamsuddin [3 ]
Yaseen, Zaher Mundher [4 ,5 ,6 ]
机构
[1] Kheradgarayan Motahar Inst Higher Educ, Dept Environm Sci & Engn, Mashhad, Razavi Khorasan, Iran
[2] Damietta Univ, Comp Dept, Dumyat, Egypt
[3] Univ Teknol Malaysia UTM, Fac Engn, Sch Civil Engn, Johor Baharu 81310, Malaysia
[4] South Ural State Univ, Inst Architecture & Construct, Dept Urban Planning Engn Networks & Syst, 76 Lenin Prospect, Chelyabinsk 454080, Russia
[5] Al Ayen Univ, Sci Res Ctr, New Era & Dev Civil Engn Res Grp, Thi Qar 64001, Nasiriyah, Iraq
[6] Asia Univ, Coll Creat Design, Taichung, Taiwan
关键词
Time-series learning; Consumer behaviour; Kernel-based extreme learning machine; Intelligent algorithms; Real-time water quality prediction; Wastewater; CHEMICAL OXYGEN-DEMAND; EFFLUENT QUALITY; TREATMENT PLANTS; MODEL; EFFICIENT; ENERGY;
D O I
10.1007/s11356-021-17190-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044.
引用
收藏
页码:20496 / 20516
页数:21
相关论文
共 52 条
[1]   Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination [J].
Abba, S., I ;
Hadi, Sinan Jasim ;
Sammen, Saad Sh ;
Salih, Sinan Q. ;
Abdulkadir, R. A. ;
Quoc Bao Pham ;
Yaseen, Zaher Mundher .
JOURNAL OF HYDROLOGY, 2020, 587
[2]   Estimating the chemical oxygen demand of petrochemical wastewater treatment plants using linear and nonlinear statistical models - A case study [J].
Abouzari, Milad ;
Pahlavani, Parham ;
Izaditame, Fatemeh ;
Bigdeli, Behnaz .
CHEMOSPHERE, 2021, 270
[4]  
Al Doury M, 2019, Tikrit Journal for Agricultural Sciences, P1, DOI [10.25130/tjes.26.1.01, 10.25130/tjes.26.1.01, DOI 10.25130/TJES.26.1.01]
[5]  
Al-Doury MMI, 2019, TIKRIT J ENG SCI, V26, P31, DOI [10.25130/tjes.26.3.04, 10.25130/tjes.26.3.04, DOI 10.25130/TJES.26.3.04]
[6]   Optimisation of reverse osmosis based wastewater treatment system for the removal of chlorophenol using genetic algorithms [J].
Al-Obaidi, M. A. ;
Li, J-P. ;
Kara-Zaitri, C. ;
Mujtaba, I. M. .
CHEMICAL ENGINEERING JOURNAL, 2017, 316 :91-100
[7]   Proposition of New Ensemble Data-Intelligence Models for Surface Water Quality Prediction [J].
Al-Sulttani, Ali Omran ;
Al-Mukhtar, Mustafa ;
Roomi, Ali B. ;
Farooque, Aitazaz Ahsan ;
Khedher, Khaled Mohamed ;
Yaseen, Zaher Mundher .
IEEE ACCESS, 2021, 9 :108527-108541
[8]   Towards a more efficient and cost-sensitive extreme learning machine: A state-of-the-art review of recent trend [J].
Alaba, Peter Adeniyi ;
Popoola, Segun Isaiah ;
Olatomiwa, Lanre ;
Akanle, Mathew Boladele ;
Ohunakin, Olayinka S. ;
Adetiba, Emmanuel ;
Alex, Opeoluwa David ;
Atayero, Aderemi A. A. ;
Daud, Wan Mohd Ashri Wan .
NEUROCOMPUTING, 2019, 350 :70-90
[9]   River water quality management model using genetic algorithm [J].
Aras, Egemen ;
Togan, Vedat ;
Berkun, Mehmet .
ENVIRONMENTAL FLUID MECHANICS, 2007, 7 (05) :439-450
[10]   Real-time model predictive control of a wastewater treatment plant based on machine learning [J].
Bernardelli, A. ;
Marsili-Libelli, S. ;
Manzini, A. ;
Stancari, S. ;
Tardini, G. ;
Montanari, D. ;
Anceschi, G. ;
Gelli, P. ;
Venier, S. .
WATER SCIENCE AND TECHNOLOGY, 2020, 81 (11) :2391-2400