Risk Prediction of Cardiovascular Events by Exploration of Molecular Data with Explainable Artificial Intelligence

被引:28
作者
Westerlund, Annie M. [1 ,2 ]
Hawe, Johann S. [1 ]
Heinig, Matthias [2 ,3 ]
Schunkert, Heribert [1 ,4 ]
机构
[1] Tech Univ Munich, Deutsch Herzzentrum Munchen, Dept Cardiol, Lazarettstr 36, D-80636 Munich, Germany
[2] HelmholtzZentrum Munchen, Inst Computat Biol, Ingolstadter Landstr 1, D-85764 Munich, Germany
[3] Tech Univ Munich, Dept Informat, Boltzmannstr 3, D-85748 Garching, Germany
[4] Munich Heart Alliance, Deutsch Zentrum Herz & Kreislaufforsch DZHK, Biedersteiner Str 29, D-80802 Munich, Germany
关键词
cardiovascular disease; coronary artery disease; genomics; proteomics; multi-omics; biomarkers; molecular networks; machine learning; AI; explainable artificial intelligence; CORONARY-ARTERY-DISEASE; DEEP NEURAL-NETWORKS; HEART-DISEASE; ALZHEIMERS-DISEASE; RECURRENT EVENTS; VASCULAR EVENTS; GENE-ONTOLOGY; SCORE; ASSOCIATION; VALIDATION;
D O I
10.3390/ijms221910291
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiovascular diseases (CVD) annually take almost 18 million lives worldwide. Most lethal events occur months or years after the initial presentation. Indeed, many patients experience repeated complications or require multiple interventions (recurrent events). Apart from affecting the individual, this leads to high medical costs for society. Personalized treatment strategies aiming at prediction and prevention of recurrent events rely on early diagnosis and precise prognosis. Complementing the traditional environmental and clinical risk factors, multi-omics data provide a holistic view of the patient and disease progression, enabling studies to probe novel angles in risk stratification. Specifically, predictive molecular markers allow insights into regulatory networks, pathways, and mechanisms underlying disease. Moreover, artificial intelligence (AI) represents a powerful, yet adaptive, framework able to recognize complex patterns in large-scale clinical and molecular data with the potential to improve risk prediction. Here, we review the most recent advances in risk prediction of recurrent cardiovascular events, and discuss the value of molecular data and biomarkers for understanding patient risk in a systems biology context. Finally, we introduce explainable AI which may improve clinical decision systems by making predictions transparent to the medical practitioner.</p>
引用
收藏
页数:31
相关论文
共 168 条
[1]   Rationale and design of the GRACE (Global Registry of Acute Coronary Events) Project:: A multinational registry of patients hospitalized with acute coronary syndromes [J].
Agnelli, G ;
Avezum, A ;
Brieger, D ;
Budaj, A ;
Cannon, CP ;
Goldberg, RJ ;
Goodman, S ;
Gulba, DC ;
Granger, C ;
Kennelly, BM ;
Gurfinkel, E ;
López-Sendón, J ;
Klein, W ;
Montalescot, G ;
Van de Werf, F .
AMERICAN HEART JOURNAL, 2001, 141 (02) :190-199
[2]   Validation of the REduction of Atherothrombosis for Continued Health (REACH) prediction model for recurrent cardiovascular disease among United Arab Emirates Nationals [J].
Al-Shamsi, Saif ;
Govender, Romona D. .
BMC RESEARCH NOTES, 2020, 13 (01)
[3]   Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants [J].
Alaa, Ahmed M. ;
Bolton, Thomas ;
Di Angelantonio, Emanuele ;
Rudd, James H. F. ;
van der Schaar, Mihaela .
PLOS ONE, 2019, 14 (05)
[4]   AN UPDATED CORONARY RISK PROFILE - A STATEMENT FOR HEALTH-PROFESSIONALS [J].
ANDERSON, KM ;
WILSON, PWF ;
ODELL, PM ;
KANNEL, WB .
CIRCULATION, 1991, 83 (01) :356-362
[5]  
[Anonymous], 2016, CARDIOVASCULAR DIS R
[6]  
Aragam K.G., 2021, medRxiv, DOI DOI 10.1101/2021.05.24.21257377
[7]   Expression Quantitative Trait Loci Acting Across Multiple Tissues Are Enriched in Inherited Risk for Coronary Artery Disease [J].
Asl, Hassan Foroughi ;
Talukdar, Husain A. ;
Kindt, Alida S. D. ;
Jain, Rajeev K. ;
Ermel, Raili ;
Ruusalepp, Arno ;
Nguyen, Khanh-Dung H. ;
Dobrin, Radu ;
Reilly, Dermot F. ;
Schunkert, Heribert ;
Samani, Nilesh J. ;
Braenne, Ingrid ;
Erdmann, Jeanette ;
Melander, Olle ;
Qi, Jianlong ;
Ivert, Torbjorn ;
Skogsberg, Josefin ;
Schadt, Eric E. ;
Michoel, Tom ;
Bjorkegren, Johan L. M. .
CIRCULATION-CARDIOVASCULAR GENETICS, 2015, 8 (02) :305-+
[8]   Pathguide: a Pathway Resource List [J].
Bader, Gary D. ;
Cary, Michael P. ;
Sander, Chris .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D504-D506
[9]   A population-based phenome-wide association study of cardiac and aortic structure and function [J].
Bai, Wenjia ;
Suzuki, Hideaki ;
Huang, Jian ;
Francis, Catherine ;
Wang, Shuo ;
Tarroni, Giacomo ;
Guitton, Florian ;
Aung, Nay ;
Fung, Kenneth ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Evangelou, Evangelos ;
Dehghan, Abbas ;
O'Regan, Declan P. ;
Wilkins, Martin R. ;
Guo, Yike ;
Matthews, Paul M. ;
Rueckert, Daniel .
NATURE MEDICINE, 2020, 26 (10) :1654-+
[10]   Automated cardiovascular magnetic resonance image analysis with fully convolutional networks [J].
Bai, Wenjia ;
Sinclair, Matthew ;
Tarroni, Giacomo ;
Oktay, Ozan ;
Rajchl, Martin ;
Vaillant, Ghislain ;
Lee, Aaron M. ;
Aung, Nay ;
Lukaschuk, Elena ;
Sanghvi, Mihir M. ;
Zemrak, Filip ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Carapella, Valentina ;
Kim, Young Jin ;
Suzuki, Hideaki ;
Kainz, Bernhard ;
Matthews, Paul M. ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Glocker, Ben ;
Rueckert, Daniel .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20