Influence of Storage Period on the Geochemical Evolution of a Compressed Energy Storage System

被引:6
|
作者
Iloejesi, Chidera O. [1 ]
Beckingham, Lauren E. [1 ]
机构
[1] Auburn Univ, Dept Civil & Environm Engn, Auburn, AL 36849 USA
来源
FRONTIERS IN WATER | 2021年 / 3卷
关键词
energy storage; CO2; sequestration; porous saline aquifer; reactive transport simulation; geochemical reactions; RENEWABLE PORTFOLIO STANDARDS; CARBON-DIOXIDE; EMPIRICAL-EVIDENCE; ROCK INTERACTIONS; HYDROGEN STORAGE; CUSHION GAS; CO2; DISSOLUTION; SEQUESTRATION; SANDSTONE;
D O I
10.3389/frwa.2021.689404
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Subsurface porous aquifers are being considered for use as reservoirs for compressed energy storage of renewable energy. In these systems, a gas is injected during times in which production exceeds demand and extracted for energy generation during periods of peak demand or scarcity in production. Current operational subsurface energy facilities use salt caverns for storage and air as the working gas. CO2 is potentially a more favorable choice of working gas where under storage conditions CO2 has high compressibility which can improve operational efficiency. However, the interaction of CO2 and brine at the boundary of the storage zone can produce a chemically active fluid which can result in mineral dissolution and precipitation reactions and alter the properties of the storage zone. This study seeks to understand the geochemical implications of utilization of CO2 as a working gas during injection, storage and extraction flow cycles. Here, reactive transport simulations are developed based on 7 h of injection, 11 h of withdrawal and 6 h of reservoir closure, corresponding to the schedule of the Pittsfield field test, for 15 years of operational life span to assess the geochemical evolution of the reservoir. The evolution in the storage system is compared to a continuously cyclic system of 12 h injection and extraction. The result of the study on operational schedule show that mineral reactivity occurs at the inlet of the domain. Furthermore, the porosity of the inner domain is preserved during the cycling of CO2 acidified brine for both systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Off-design Performance of Compressed Air Energy Storage System With Thermal Storage
    Guo H.
    Xu Y.
    Zhang X.
    Guo C.
    Chen H.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39 (05): : 1366 - 1376
  • [22] Performance analysis on solar heat storage type compressed air energy storage system
    Zhu, Rui
    Xu, Yujie
    Li, Bin
    Chen, Haisheng
    Guo, Huan
    Li, Yuping
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2019, 40 (06): : 1536 - 1544
  • [23] Reduction on the inefficiency of heat recovery storage in a compressed carbon dioxide energy storage system
    Huang, Rui
    Zhou, Kang
    Liu, Zhan
    ENERGY, 2022, 244
  • [24] Performance analysis and optimization of gas storage device in compressed air energy storage system
    Pang, Yongchao (energystoragepang@foxmail.com), 1600, Chemical Industry Press Co., Ltd. (35):
  • [25] EFFICIENCY ASSESSMENT OF COMPRESSED AIR ENERGY STORAGE SYSTEM COUPLED WITH THERMAL ENERGY STORAGE UNIT: REVIEW
    Assegie, Mebratu Adamu
    Siram, Ojing
    Kalita, Pankaj
    Sahoo, Niranjan
    PROCEEDINGS OF ASME 2023 GAS TURBINE INDIA CONFERENCE, GTINDIA2023, 2023,
  • [26] Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications
    Alami, Abdul Hai
    Aokal, Kamilia
    Abed, Jehad
    Alhemyari, Mohammad
    RENEWABLE ENERGY, 2017, 106 : 201 - 211
  • [27] Experimental and Numerical Investigations of a Compressed Air Energy Storage (CAES) System as a Wind Energy Storage Option
    Alami, Abdul Hai
    Aokal, Camilia
    Alchadirchy, Monadhel Jabar
    EXERGY FOR A BETTER ENVIRONMENT AND IMPROVED SUSTAINABILITY 2: APPLICATIONS, 2018, : 1147 - 1154
  • [28] Energy and exergy analysis of adiabatic compressed air energy storage system
    Szablowski, Lukasz
    Krawczyk, Piotr
    Badyda, Krzysztof
    Karellas, Sotirios
    Kakaras, Emmanuel
    Bujalski, Wojciech
    ENERGY, 2017, 138 : 12 - 18
  • [29] Corresponding-point methodology for physical energy storage system analysis and application to compressed air energy storage system
    Guo, Huan
    Xu, Yujie
    Chen, Haisheng
    Zhang, Xinjing
    Qin, Wei
    ENERGY, 2018, 143 : 772 - 784
  • [30] Influence of Energy Storage Pressure on the Characteristics of Liquid Air Energy Storage System
    Liu Q.
    Ge J.
    Huang B.
    Wang W.
    Liu Y.
    He Y.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2019, 53 (11): : 1 - 9