Longitudinal functional principal component analysis

被引:129
作者
Greven, Sonja [1 ]
Crainiceanu, Ciprian [2 ]
Caffo, Brian [2 ]
Reich, Daniel [3 ,4 ,5 ]
机构
[1] Univ Munich, Dept Stat, D-80539 Munich, Germany
[2] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21205 USA
[3] NIH, Natl Inst Neurol Disorders & Stroke, Neuroimmunol Branch, Translat Neuroradiol Unit, Bethesda, MD 20814 USA
[4] Johns Hopkins Univ Hosp, Dept Radiol, Baltimore, MD 21287 USA
[5] Johns Hopkins Univ Hosp, Dept Neurol, Baltimore, MD 21287 USA
关键词
Diffusion tensor imaging; functional data analysis; Karhunen-Loeve expansion; longitudinal data analysis; mixed effects model; MODELS; TRACTOGRAPHY; COEFFICIENT; REGRESSION; TRACT;
D O I
10.1214/10-EJS575
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce models for the analysis of functional data observed at multiple time points. The dynamic behavior of functional data is decomposed into a time-dependent population average, baseline (or static) subject-specific variability, longitudinal (or dynamic) subject-specific variability, subject-visit-specific variability and measurement error. The model can be viewed as the functional analog of the classical longitudinal mixed effects model where random effects are replaced by random processes. Methods have wide applicability and are computationally feasible for moderate and large datasets. Computational feasibility is assured by using principal component bases for the functional processes. The methodology is motivated by and applied to a diffusion tensor imaging (DTI) study designed to analyze differences and changes in brain connectivity in healthy volunteers and multiple sclerosis (MS) patients. An R implementation is provided.
引用
收藏
页码:1022 / 1054
页数:33
相关论文
共 53 条
[1]  
[Anonymous], 1996, Local polynomial modelling and its applications
[2]  
[Anonymous], 2003, Semiparametric Regression
[3]  
[Anonymous], 2006, Generalized additive models: an introduction with R. Chapman and Hall/CRC
[4]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[5]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[6]   Smoothing spline models for the analysis of nested and crossed samples of curves [J].
Brumback, BA ;
Rice, JA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) :961-976
[7]  
CALABRESI PA, 2008, CECIL MED
[8]   Generalized Multilevel Functional Regression [J].
Crainiceanu, Ciprian M. ;
Staicu, Ana-Maria ;
Di, Chong-Zhi .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (488) :1550-1561
[9]   Likelihood ratio tests in linear mixed models with one variance component [J].
Crainiceanu, CM ;
Ruppert, D .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 :165-185
[10]   MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS [J].
Di, Chong-Zhi ;
Crainiceanu, Ciprian M. ;
Caffo, Brian S. ;
Punjabi, Naresh M. .
ANNALS OF APPLIED STATISTICS, 2009, 3 (01) :458-488