Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis

被引:93
|
作者
Garami, Andras [1 ]
Shimansky, Yury P. [2 ]
Rumbus, Zoltan [1 ]
Vizin, Robson C. L. [3 ,4 ]
Farkas, Nelli [5 ,6 ]
Hegyi, Judit [5 ,6 ]
Szakacs, Zsolt [5 ,6 ]
Solymar, Margit [1 ]
Csenkey, Alexandra [1 ]
Chiche, Dan A. [7 ]
Kapil, Ram [8 ]
Kyle, Donald J. [8 ]
Van Horn, Wade D. [9 ]
Hegyi, Peter [5 ,6 ,10 ]
Romanovsky, Andrej A. [3 ,4 ,9 ,11 ]
机构
[1] Univ Pecs, Med Sch, Inst Translat Med, Dept Thermophysiol, 12 Szigeti St, H-7624 Pecs, Hungary
[2] Dign Hlth, Dept Neurobiol, Barrow Neurol Inst, Phoenix, AZ USA
[3] St Josephs Hosp, Thermoregulat & Syst Inflammat Lab FeverLab, Trauma Res, Phoenix, AZ USA
[4] Dign Hlth, Med Ctr, Phoenix, AZ USA
[5] Univ Pecs, Med Sch, Inst Translat Med, Pecs, Hungary
[6] Univ Pecs, Szentagothai Res Ctr, Pecs, Hungary
[7] NEOMED Inst, Montreal, PQ, Canada
[8] Purdue Pharma LP, Cranbury, NJ USA
[9] Arizona State Univ, Sch Mol Sci, Tempe, AZ USA
[10] Univ Pecs, Med Sch, Dept Translat Med, Dept Med 1, Pecs, Hungary
[11] Zharko Pharma Inc, 5423 Lily Jo Court SE, Olympia, WA 98501 USA
基金
美国国家卫生研究院;
关键词
Thermoregulation; TRPV1; blockers; Hyperthermic; Hypothermia; Protons; Drug development; SPECIES-SPECIFIC SENSITIVITY; DORSAL-HORN NEURONS; DOUBLE-BLIND; CAPSAICIN-RECEPTOR; IN-VITRO; PHARMACOLOGICAL CHARACTERIZATION; BODY-TEMPERATURE; UP-REGULATION; NOXIOUS HEAT; FUNCTIONAL-CHARACTERIZATION;
D O I
10.1016/j.pharmthera.2020.107474
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Antagonists of the transient receptor potential vanilloid-1 (TRPV1) channel alter body temperature (T-b) in laboratory animals and humans: most cause hyperthermia; some produce hypothermia; and yet others have no effect. TRPV1 can be activated by capsaicin (CAP), protons (low pH), and heat. First-generation (polymodal) TRPVI antagonists potently block all three TRPV1 activation modes. Second-generation (mode-selective) TRPVI antagonists potently block channel activation by CAP, but exert different effects (e.g., potentiation, no effect, or low-potency inhibition) in the proton mode, heat mode, or both. Based on our earlier studies in rats, only one mode of TRPV1 activation - by protons - is involved in thermoregulatory responses to TRPV1 antagonists. In rats, compounds that potently block, potentiate, or have no effect on proton activation cause hyperthermia, hypothermia, or no effect on Tb, respectively. A T-b response occurs when a TRPVI antagonist blocks (in case of hyperthermia) or potentiates (hypothermia) the tonic TRPVI activation by protons somewhere in the trunk, perhaps in muscles, and - via the acido-antithermogenic and acido-antivasoconstrictor reflexes - modulates thermogenesis and skin vasoconstriction. In this work, we used a mathematical model to analyze T-b data from human clinical trials of TRPV1 antagonists. The analysis suggests that, in humans, the hyperthermic effect depends on the antagonist's potency to block TRPV1 activation not only by protons, but also by heat, while the CAP activation mode is uninvolved. Whereas in rats TRPV1 drives thermoeffectors by mediating pH signals from the trunk, but not T-b signals, our analysis suggests that TRPV1 mediates both pH and thermal signals driving thermoregulation in humans. Hence, in humans (but not in rats), TRPV1 is likely to serve as a thermosensor of the thermoregulation system. We also conducted a meta-analysis of Tb data from human trials and found that polymodal TRPV1 antagonists (ABT-102, AZD1386, and V116517) increase T-b, whereas the mode-selective blocker NE06860 does not. Several strategies of harnessing the thermoregulatory effects of TRPV1 antagonists in humans are discussed. (C) 2020 The Authors. Published by Elsevier Inc.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Activation of transient receptor potential vanilloid-1 (TRPV1) influences how retinal ganglion cell neurons respond to pressure-related stress
    Sappington, Rebecca M.
    Sidorova, Tatiana
    Ward, Nicholas J.
    Chakravarthy, Rohini
    Ho, Karen W.
    Calkins, David J.
    CHANNELS, 2015, 9 (02) : 102 - 113
  • [22] Pharmacology of Modality-Specific Transient Receptor Potential Vanilloid-1 Antagonists That Do Not Alter Body Temperature
    Reilly, Regina M.
    McDonald, Heath A.
    Puttfarcken, Pamela S.
    Joshi, Shailen K.
    Lewis, LaGeisha
    Pai, Madhavi
    Franklin, Pamela H.
    Segreti, Jason A.
    Neelands, Torben R.
    Han, Ping
    Chen, Jun
    Mantyh, Patrick W.
    Ghilardi, Joseph R.
    Turner, Teresa M.
    Voight, Eric A.
    Daanen, Jerome F.
    Schmidt, Robert G.
    Gomtsyan, Arthur
    Kort, Michael E.
    Faltynek, Connie R.
    Kym, Philip R.
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2012, 342 (02) : 416 - 428
  • [23] Differences in the acidic sensitivity of transient receptor potential vanilloid 1 (TRPV1) between chickens and mice
    Liang, Ruojun
    Kawabata, Yuko
    Kawabata, Fuminori
    Nishimura, Shotaro
    Tabata, Shoji
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 515 (02) : 386 - 393
  • [24] Dietary supplementation of transient receptor potential vanilloid-1 channel agonists reduces serum total cholesterol level: a meta-analysis of controlled human trials
    Kelava, Leonardo
    Nemeth, David
    Hegyi, Peter
    Keringer, Patrik
    Kovacs, Dora K.
    Balasko, Marta
    Solymar, Margit
    Pakai, Eszter
    Rumbus, Zoltan
    Garami, Andras
    CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2022, 62 (25) : 7025 - 7035
  • [25] Rat detrusor overactivity induced by chronic spinalization can be abolished by a transient receptor potential vanilloid 1 (TRPV1) antagonist
    Santos-Silva, Andre
    Charrua, Ana
    Cruza'b, Celia D.
    Gharat, Laxmikant
    Avelino, Antonio
    Cruz, Francisco
    AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL, 2012, 166 (1-2): : 35 - 38
  • [26] Discovery of Novel 5,5-Diarylpentadienamides as Orally Available Transient Receptor Potential Vanilloid 1 (TRPV1) Antagonists
    Saku, Osamu
    Ishida, Hiroshi
    Atsumi, Eri
    Sugimoto, Yoshiyuki
    Kodaira, Hiroshi
    Kato, Yoshimitsu
    Shirakura, Shiro
    Nakasato, Yoshisuke
    JOURNAL OF MEDICINAL CHEMISTRY, 2012, 55 (07) : 3436 - 3451
  • [27] Involvement of Transient Receptor Potential Cation Channel Vanilloid 1 (TRPV1) in Myoblast Fusion
    Kurosaka, Mitsutoshi
    Ogura, Yuji
    Funabashi, Toshiya
    Akema, Tatsuo
    JOURNAL OF CELLULAR PHYSIOLOGY, 2016, 231 (10) : 2275 - 2285
  • [28] A journey from molecule to physiology and in silico tools for drug discovery targeting the transient receptor potential vanilloid type 1 (TRPV1) channel
    Amaya-Rodriguez, Cesar A.
    Carvajal-Zamorano, Karina
    Bustos, Daniel
    Alegria-Arcos, Melissa
    Castillo, Karen
    FRONTIERS IN PHARMACOLOGY, 2024, 14
  • [29] 4-Aminophenyl acetamides and propanamides as potent transient receptor potential vanilloid 1 (TRPV1) ligands
    Kim, Changhoon
    Ann, Jihyae
    Lee, Sunho
    Kim, Eunhye
    Choi, Sun
    Blumberg, Peter M.
    Frank-Foltyn, Robert
    Bahrenberg, Gregor
    Stockhause, Hannelore
    Christoph, Thomas
    Lee, Jeewoo
    BIOORGANIC & MEDICINAL CHEMISTRY, 2018, 26 (15) : 4509 - 4517
  • [30] Gastric Carcinogenesis and Potential Role of the Transient Receptor Potential Vanilloid 1 (TRPV1) Receptor: An Observational Histopathological Study
    Groen, Sylvester R.
    Keszthelyi, Daniel
    Szallasi, Arpad
    van Veghel, Jara A.
    Alleleyn, Annick M. E.
    Cseko, Kata
    Helyes, Zsuzsanna
    Samarska, Iryna
    Grabsch, Heike I.
    Masclee, Ad A. M.
    Weerts, Zsa Zsa R. M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (15)