A linear property of Goldie dimension of modules and modular lattices

被引:2
作者
Puczylowski, Edmund R. [1 ]
机构
[1] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
关键词
KRULL DIMENSION; SUM;
D O I
10.1016/j.jpaa.2010.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe modular lattices with 0 for which a counterpart of the property that minimal generating subsets of linear spaces are their bases is satisfied and those for which cardinalities of minimal generating sets are equal to the Goldie dimension. The results obtained on lattices are applied to modules. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1596 / 1605
页数:10
相关论文
共 15 条
[1]   Localization of modular lattices, krull dimension, and the Hopkins-Levitzki Theorem .2. [J].
Albu, T ;
Smith, PF .
COMMUNICATIONS IN ALGEBRA, 1997, 25 (04) :1111-1128
[2]   Dual Krull dimension and quotient finite dimensionality [J].
Albu, TA ;
Iosif, M ;
Teply, ML .
JOURNAL OF ALGEBRA, 2005, 284 (01) :52-79
[3]  
Anderson F. W., 1974, Rings and Categories of Modules
[4]  
CAMILLO V, 1978, COMMUN ALGEBRA, V6, P345, DOI 10.1080/00927877808822249
[5]  
CAMILLO VP, 1990, PAC J MATH, V91, P249
[6]   INFINITE GOLDIE DIMENSIONS [J].
DAUNS, J ;
FUCHS, L .
JOURNAL OF ALGEBRA, 1988, 115 (02) :297-302
[7]  
DELVALLE A, 1994, COMMUN ALGEBRA, V22, P1257
[8]   NOTE ON DUALIZING GOLDIE DIMENSION [J].
FLEURY, P .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1974, 17 (04) :511-517
[9]  
Gratzer G., 1978, General lattice theory
[10]   ON INFINITE GOLDIE-DIMENSION OF MODULAR LATTICES AND MODULES [J].
GRZESZCZUK, P ;
PUCZYLOWSKI, ER .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1985, 35 (02) :151-155