Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments

被引:125
作者
Holmes, Dawn E. [1 ]
O'Neil, Regina A. [1 ]
Vrionis, Helen A. [1 ]
N'Guessan, Lucie A. [1 ]
Ortiz-Bernad, Irene [1 ]
Larrahondo, Maria J. [1 ]
Adams, Lorrie A. [1 ]
Ward, Joy A. [1 ]
Nicoll, Julie S. [1 ]
Nevin, Kelly P. [1 ]
Chavan, Milind A. [1 ]
Johnson, Jessica P. [1 ]
Long, Philip E. [2 ]
Lovley, Derek R. [1 ]
机构
[1] Univ Massachusetts, Dept Microbiol, Morrill N Sci Ctr 4, Amherst, MA 01003 USA
[2] Pacific NW Natl Lab, Richland, WA 99352 USA
关键词
Geobacter; Fe(III) reduction; subsurface sediments; uranium bioremediation;
D O I
10.1038/ismej.2007.85
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants.
引用
收藏
页码:663 / 677
页数:15
相关论文
共 60 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   COMBINATION OF 16S RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES WITH FLOW-CYTOMETRY FOR ANALYZING MIXED MICROBIAL-POPULATIONS [J].
AMANN, RI ;
BINDER, BJ ;
OLSON, RJ ;
CHISHOLM, SW ;
DEVEREUX, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (06) :1919-1925
[3]   Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum contaminated aquifers [J].
Anderson, RT ;
Rooney-Varga, JN ;
Gaw, CV ;
Lovley, DR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (09) :1222-1229
[4]   Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer [J].
Anderson, RT ;
Vrionis, HA ;
Ortiz-Bernad, I ;
Resch, CT ;
Long, PE ;
Dayvault, R ;
Karp, K ;
Marutzky, S ;
Metzler, DR ;
Peacock, A ;
White, DC ;
Lowe, M ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (10) :5884-5891
[5]  
BAEDECKER MJ, 1989, 884220 US GEOL SURV, P13
[6]   MView: a web-compatible database search or multiple alignment viewer [J].
Brown, NP ;
Leroy, C ;
Sander, C .
BIOINFORMATICS, 1998, 14 (04) :380-381
[7]   GEOBACTER SULFURREDUCENS SP-NOV, A HYDROGEN-OXIDIZING AND ACETATE-OXIDIZING DISSIMILATORY METAL-REDUCING MICROORGANISM [J].
CACCAVO, F ;
LONERGAN, DJ ;
LOVLEY, DR ;
DAVIS, M ;
STOLZ, JF ;
MCINERNEY, MJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (10) :3752-3759
[8]   Microbial incorporation of 13C-labeled acetate at the field scale:: Detection of microbes responsible for reduction of U(VI) [J].
Chang, YJ ;
Long, PE ;
Geyer, R ;
Peacock, AD ;
Resch, CT ;
Sublette, K ;
Pfiffner, S ;
Smithgall, A ;
Anderson, RT ;
Vrionis, HA ;
Stephen, JR ;
Dayvault, R ;
Ortiz-Bernad, I ;
Lovley, DR ;
White, DC .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (23) :9039-9048
[9]   Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis [J].
Childers, SE ;
Ciufo, S ;
Lovley, DR .
NATURE, 2002, 416 (6882) :767-769
[10]  
CHURCH P, 1996, EFFECTIVENESS HIGHWA