A spectral method for elliptic equations: the Neumann problem

被引:21
作者
Atkinson, Kendall [1 ,2 ]
Hansen, Olaf [3 ]
Chien, David [3 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Comp Sci, Iowa City, IA 52242 USA
[3] Calif State Univ San Marcos, Dept Math, San Marcos, TX USA
关键词
Spectral methods; Elliptic equations; Neumann problem; Galerkin method; APPROXIMATION;
D O I
10.1007/s10444-010-9154-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be an open, simply connected, and bounded region in a"e (d) , d a parts per thousand yenaEuro parts per thousand 2, and assume its boundary a,Omega is smooth. Consider solving the elliptic partial differential equation -aEuro parts per thousand I"u + gamma u = f over Omega with a Neumann boundary condition. The problem is converted to an equivalent elliptic problem over the unit ball B, and then a spectral method is given that uses a special polynomial basis. In the case the Neumann problem is uniquely solvable, and with sufficiently smooth problem parameters, the method is shown to have very rapid convergence. Numerical examples illustrate exponential convergence.
引用
收藏
页码:295 / 317
页数:23
相关论文
共 18 条
[1]  
[Anonymous], 1971, Approximate Calculation of Multiple Integrals
[2]  
[Anonymous], 1971, NUMERICAL PERFORMANC
[3]  
Atkinson K., 2005, Theoretical Numerical Analysis
[4]   A spectral method for elliptic equations: the Dirichlet problem [J].
Atkinson, Kendall ;
Chien, David ;
Hansen, Olaf .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (02) :169-189
[5]   Multivariate simultaneous approximation [J].
Bagby, T ;
Bos, L ;
Levenberg, N .
CONSTRUCTIVE APPROXIMATION, 2002, 18 (04) :569-577
[6]  
Brenner S. C., 2007, MATH THEORY FINITE E
[7]  
Canuto C., 2012, Spectral Methods in Fluid Dynamics
[8]  
Canuto C., 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[9]   Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials [J].
Doha, EH ;
Abd-Elhameed, WM .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (02) :548-571
[10]  
Dunkl C. F., 2014, Encyclopedia of Mathematics and its Applications, V2