A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation

被引:50
|
作者
Guan, Qingjie [1 ,2 ]
Wang, Zhenjuan [1 ]
Wang, Xuhui [1 ]
Takano, Tetsuo [3 ]
Liu, Shenkui [1 ]
机构
[1] Northeast Forestry Univ, ASNESC, Key Lab Saline Alkali Vegetat Ecol Restorat Oil F, Minist Educ, Harbin 150040, Peoples R China
[2] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Lab Soybean Mol Biol & Mol Breeding, Harbin 150081, Peoples R China
[3] Univ Tokyo, Asian Nat Environm Sci Ctr, Tokyo 1880002, Japan
基金
美国国家科学基金会;
关键词
Puccinellia tenuiflora; Arabidopsis thaliana; APX (ascorbate peroxidase); Transgenic plant; Salt-alkali and oxidative stresses; ASCORBATE PEROXIDASE; OXIDATIVE STRESS; ANTIOXIDANT ENZYME; HYDROGEN-PEROXIDE; PLANT-RESPONSES; SALT TOLERANCE; OXYGEN; GENE; EXPRESSION; PROTEIN;
D O I
10.1016/j.jplph.2014.10.020
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ascorbate peroxidase (APX, EC 1.11.1.11) is one of the major members of the ROS scavenging system that plays an important role in improving saline-alkali tolerance. Puccinellia tenuiflora, as a perennial wild grass, is able to grow in extreme saline-alkali soil environments. In this study, we investigated the relationship between the Puccinellia tenuiflora ascorbate peroxidase (PutAPX) gene and saline-alkali tolerance. A phylogenetic analysis indicated that PutAPX is closely related to AtAPX3 and OsAPX4 and that these genes are on the same branch. The PutAPX-GFP fusion protein is located in the peroxisome in onion epidermal cells. The transcriptional expression of PutAPX increased with prolonged exposure to NaCl, NaHCO3, PEG6000 and H2O2 stresses in Puccinellia tenuiflora. The overexpression of PutAPX in Arabidopsis thaliana significantly increased the tolerance of plants treated with 150 and 175 mM NaCl and decreased the extent of lipid peroxidation. The transgenic seedlings presented higher chlorophyll content than wild type (WT) seedlings treated with 1, 3, and 5 mM NaHCO3 and 3 mM H2O2. The DAB staining results revealed that the H2O2 content in transgenic seedlings was significantly lower than that in WT plants under both normal conditions and 200 mM NaCl stress. Moreover, the expression of APX proteins and enzyme activity in the transgenic seedlings increased to level that were greater than twofold higher than those found in WT plants exposed to 200 mM NaCl. The saline-alkali tolerance conferred by the PutAPX gene may provide a reliable basis for the use of molecular breeding techniques to improve plant tolerance and obtain a better understanding of the physiological mechanism of anti-oxidative and ROS stresses. (C) 2015 Published by Elsevier GmbH.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 50 条
  • [1] A Chloroplast-Localized Rubredoxin Family Protein Gene from Puccinellia tenuiflora (PutRUB) Increases NaCl and NaHCO3 Tolerance by Decreasing H2O2 Accumulation
    Li, Ying
    Liu, Panpan
    Takano, Tetsuo
    Liu, Shenkui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (06)
  • [2] Overexpression of TsApx1 from Thellungiella salsuginea improves abiotic stress tolerance in transgenic Arabidopsis thaliana
    Li, Z. Q.
    Li, J. X.
    Li, H. J.
    Shi, Z. H.
    Zhang, G. F.
    BIOLOGIA PLANTARUM, 2015, 59 (03) : 497 - 506
  • [3] Overexpression of tomato SlTpx improves salt stress tolerance in transgenic tobacco plants by scavenging H2O2
    Shengtai Qiao
    Yang Feng
    Jinping Yan
    Kunzhi Li
    Huini Xu
    Plant Cell, Tissue and Organ Culture (PCTOC), 2022, 151 : 321 - 333
  • [4] Overexpression of tomato SlTpx improves salt stress tolerance in transgenic tobacco plants by scavenging H2O2
    Qiao, Shengtai
    Feng, Yang
    Yan, Jinping
    Li, Kunzhi
    Xu, Huini
    PLANT CELL TISSUE AND ORGAN CULTURE, 2022, 151 (02) : 321 - 333
  • [5] Faster Removal of 2-Phosphoglycolate through Photorespiration Improves Abiotic Stress Tolerance of Arabidopsis
    Timm, Stefan
    Woitschach, Franziska
    Heise, Carolin
    Hagemann, Martin
    Bauwe, Hermann
    PLANTS-BASEL, 2019, 8 (12):
  • [6] Overexpression of NnDREB2, isolated from lotus improves salt tolerance in transgenic Arabidopsis thaliana
    Libao Cheng
    Linchong Hui
    Li Yin
    Shuyan Li
    Xuehao Chen
    Liangjun Li
    Acta Physiologiae Plantarum, 2015, 37
  • [7] Overexpression of NnDREB2, isolated from lotus improves salt tolerance in transgenic Arabidopsis thaliana
    Cheng, Libao
    Hui, Linchong
    Yin, Li
    Li, Shuyan
    Chen, Xuehao
    Li, Liangjun
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (12) : 1 - 12
  • [8] H2O2 leaf priming improves tolerance to cold stress in pistachio rootstocks
    Goharrizi, Kiarash Jamshidi
    Momeni, Mohammad Mehdi
    Karami, Soraya
    Meru, Geoffrey
    Nazari, Maryam
    Ghanaei, Sedighe
    Moeinzadeh, Asma
    ACTA PHYSIOLOGIAE PLANTARUM, 2024, 46 (02)
  • [9] H2O2 seed priming improves tolerance to salinity stress in durum wheat
    Mohammad Mehdi Momeni
    Mansoor Kalantar
    Mehdi Dehghani-Zahedani
    Cereal Research Communications, 2023, 51 : 391 - 401
  • [10] H2O2 seed priming improves tolerance to salinity stress in durum wheat
    Momeni, Mohammad Mehdi
    Kalantar, Mansoor
    Dehghani-Zahedani, Mehdi
    CEREAL RESEARCH COMMUNICATIONS, 2023, 51 (02) : 391 - 401