A bisimidazolium-based cationic covalent triazine framework for CO2 capture and dye adsorption

被引:5
作者
Xi, Sun-Chang [1 ]
Guo, Hao-Nan [1 ]
Yang, Chang-Yuan [1 ]
Wang, Ren [1 ]
Wang, Dong-Yue [1 ]
Dong, Bin [1 ]
机构
[1] China Univ Min & Technol, Sch Chem Engn & Technol, Key Lab Coal Proc & Efficient Utilizat Minist Edu, Minist Educ, Xuzhou 221116, Jiangsu, Peoples R China
关键词
CO2; capture; Dye removal; Covalent triazine frameworks; Imidazolium cations; Electrostatic interaction; ORGANIC FRAMEWORKS; AQUEOUS-SOLUTION; POLYMERS; REMOVAL; PLATFORM; PERFORMANCE; DESIGN;
D O I
10.1016/j.eurpolymj.2021.110821
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this work, an aromatic nitrile containing the pyrimidine moiety and bisimidazolium cations (PyImCl) was synthesized and subsequently employed to prepare a bisimidazolium-based cationic covalent triazine framework (PyImCl-cCTF) through the ionothermal trimerization reaction. The chemical composition and structure of PyImCl-cCTF were carefully revealed by a series of techniques. As examined by N-2 sorption isotherms at 77 K, PyImCl-cCTF exhibited large surface area and abundant microporous structures. Together with the high content of imidazolium cations derived from the bisimidazolium-based monomer, PyImCl-cCTF showed high CO2 uptake capacity of 235 and 133 mg/g at 1 bar under 273 and 298 K, respectively, superior to the previously reported cCTFs. The dye adsorption performance of PyImCl-cCTF was performed for commonly used dyes. Surprisingly, PyImCl-cCTF exhibited a certain removal effect on both anionic and cationic dyes. Moreover, PyImCl-cCTF with the positively charged skeleton can quickly remove anionic dyes through electrostatic interactions, showing almost 100% removal efficiency within 20 min. These results demonstrate that PyImCl-cCTF can behave as an efficient adsorbent for both CO2 capture and dye removal to solve environmental problems.
引用
收藏
页数:8
相关论文
共 59 条
  • [1] Emerging opportunities for nanotechnology to enhance water security
    Alvarez, Pedro J. J.
    Chan, Candace K.
    Elimelech, Menachem
    Halas, Naomi J.
    Villagan, Dino
    [J]. NATURE NANOTECHNOLOGY, 2018, 13 (08) : 634 - 641
  • [2] Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis
    Annadurai, Gurusamy
    Ling, Lai Yi
    Lee, Jiunn-Fwu
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2008, 152 (01) : 337 - 346
  • [3] Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation
    Bhunia, Asamanjoy
    Boldog, Ishtvan
    Moeller, Andreas
    Janiak, Christoph
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (47) : 14990 - 14999
  • [4] From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities
    Bhunia, Asamanjoy
    Vasylyeva, Vera
    Janiak, Christoph
    [J]. CHEMICAL COMMUNICATIONS, 2013, 49 (38) : 3961 - 3963
  • [5] Charged Covalent Triazine Frameworks for CO2 Capture and Conversion
    Buyukcakir, Onur
    Je, Sang Hyun
    Talapaneni, Siddulu Naidu
    Kim, Daeok
    Coskun, Ali
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (08) : 7209 - 7216
  • [6] Removal of simulated radionuclide Ce(III) from aqueous solution by as-synthesized chrysotile nanotubes
    Cheng, Leilei
    Yu, Shaoming
    Zha, Caicun
    Yao, Yunjin
    Pan, Xiaofeng
    [J]. CHEMICAL ENGINEERING JOURNAL, 2012, 213 : 22 - 30
  • [7] Conventional and non-conventional adsorbents for wastewater treatment
    Crini, Gregorio
    Lichtfouse, Eric
    Wilson, Lee D.
    Morin-Crini, Nadia
    [J]. ENVIRONMENTAL CHEMISTRY LETTERS, 2019, 17 (01) : 195 - 213
  • [8] Novel Covalent Triazine Framework for High-Performance CO2 Capture and Alkyne Carboxylation Reaction
    Dang, Qin-Qin
    Liu, Chun-Yan
    Wang, Xiao-Min
    Zhang, Xian-Ming
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (33) : 27972 - 27978
  • [9] Porous Organic Materials: Strategic Design and Structure-Function Correlation
    Das, Saikat
    Heasman, Patrick
    Ben, Teng
    Qiu, Shilun
    [J]. CHEMICAL REVIEWS, 2017, 117 (03) : 1515 - 1563
  • [10] A mixed-linker approach towards improving covalent triazine-based frameworks for CO2 capture and separation
    Dey, Subarna
    Bhunia, Asamanjoy
    Boldog, Ishtvan
    Janiak, Christoph
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2017, 241 : 303 - 315