DEEP POINT CONVOLUTIONAL APPROACH FOR 3D MODEL RETRIEVAL

被引:0
|
作者
Kuang, Zhenzhong [1 ]
Yu, Jun [1 ]
Fan, Jianping [1 ,2 ]
Tan, Min [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Key Lab Complex Syst Modeling & Simulat, Hangzhou, Peoples R China
[2] Univ N Carolina, Dept Comp Sci, Charlotte, NC USA
来源
2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME) | 2018年
基金
中国国家自然科学基金;
关键词
3D shape retrieval; isometric shape representation; deep learning; point convolution; SHAPES;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
With the increasing popularity of 3D models, retrieving deformable 3D objects is becoming a crucial task. The state-of-the-art methods use complex deep neural networks to address this problem, which require lots of computational resources. In this paper, we develop a more effective solution by using point convolution. Our algorithm takes local point descriptors as the input and produces a global vector for shape retrieval. To save the efforts of designing complex deep convolutional neural network (CNN), we first use intrinsic point descriptors to describe the shape deformations. Then, a simple but effective point CNN network is developed to integrate the local shape information by performing subspace compression and fusion, which depends on an end-to-end learning process to link the local and global information for discriminative shape representation. The experimental results on popular benchmarks have verified that our algorithm is able to outperform the state-of-the-art methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Deep shape-aware descriptor for nonrigid 3D object retrieval
    Ghodrati, Hamed
    Ben Hamza, A.
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2016, 5 (03) : 151 - 164
  • [42] Nonrigid 3D shape retrieval using deep auto-encoders
    Ghodrati, Hamed
    Ben Hamza, A.
    APPLIED INTELLIGENCE, 2017, 47 (01) : 44 - 61
  • [43] Nonrigid 3D shape retrieval using deep auto-encoders
    Hamed Ghodrati
    A. Ben Hamza
    Applied Intelligence, 2017, 47 : 44 - 61
  • [44] CorsNet: 3D Point Cloud Registration by Deep Neural Network
    Kurobe, Akiyoshi
    Sekikawa, Yusuke
    Ishikawa, Kohta
    Saito, Hideo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03): : 3960 - 3966
  • [45] LassoNet: Deep Lasso-Selection of 3D Point Clouds
    Chen, Zhutian
    Zeng, Wei
    Yang, Zhiguang
    Yu, Lingyun
    Fu, Chi-Wing
    Qu, Huamin
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 195 - 204
  • [46] A review of deep learning based on 3D point cloud segmentation
    Lu J.
    Jia X.-R.
    Zhou J.
    Liu W.
    Zhang K.-B.
    Pang F.-F.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (03): : 595 - 611
  • [47] PSVMLP: Point and Shifted Voxel MLP for 3D deep learning
    Xie, Guanghu
    Liu, Yang
    Ji, Yiming
    Xie, Zongwu
    Cao, Baoshi
    PATTERN RECOGNITION LETTERS, 2024, 185 : 1 - 7
  • [48] A convolutional architecture for 3D model embedding using image views
    Arniel Labrada
    Benjamin Bustos
    Ivan Sipiran
    The Visual Computer, 2024, 40 : 1601 - 1615
  • [49] A convolutional architecture for 3D model embedding using image views
    Labrada, Arniel
    Bustos, Benjamin
    Sipiran, Ivan
    VISUAL COMPUTER, 2024, 40 (03): : 1601 - 1615
  • [50] DANet: Density Adaptive Convolutional Network With Interactive Attention for 3D Point Clouds
    He, Yong
    Yu, Hongshan
    Yang, Zhengeng
    Sun, Wei
    Feng, Mingtao
    Mian, Ajmal
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (09) : 5496 - 5503