Contextual anomaly detection on time series: a case study of metro ridership analysis

被引:10
|
作者
Pasini, Kevin [1 ,2 ]
Khouadjia, Mostepha [1 ]
Same, Allou [2 ]
Trepanier, Martin [3 ]
Oukhellou, Latifa [2 ]
机构
[1] Inst Rech Technol IRT SystemX, Paris, France
[2] Univ Gustave Eiffel, Cosys Grettia, Champs Sur Marne, France
[3] Polytech Montreal, Ctr Interuniv Rech Sur Reseaux Entreprise Logist, Montreal, PQ, Canada
关键词
Contextual anomaly detection; Forecasting; Machine learning; Multivariate time series; Recurrent neural network; REGRESSION; MODEL;
D O I
10.1007/s00521-021-06455-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increase in the amount of data collected in the transport domain can greatly benefit mobility studies and create high value-added mobility information for passengers, data analysts, and transport operators. This work concerns the detection of the impact of disturbances on a transport network. It aims, from smart card data analysis, to finely quantify the impacts of known disturbances on the transportation network usage and to reveal unexplained statistical anomalies that may be related to unknown disturbances. The mobility data studied take the form of a multivariate time series evolving in a dynamic environment with additional contextual attributes. The research mainly focuses on contextual anomaly detection using machine learning models. Our main goal is to build a robust anomaly score to highlight statistical anomalies (contextual extremums), considering the variability within the time series induced by the dynamic context. The robust anomaly score is built from normalized forecasting residuals. The normalization of the residuals is carried out using the estimated contextual variance. Indeed, there are complex dynamics on both the mean and the variance in the ridership time series induced by the flexible transportation schedule, the variability in transport demand, and contextual factors such as the station location and the calendar information. Therefore, they should be considered by the anomaly detection approach to obtain a reliable anomaly score. We investigate several prediction models (including an LSTM encoder-decoder of the recurrent neural network deep learning family) and several variance estimators obtained through dedicated models or extracted from prediction models. The proposed approaches are evaluated on synthetic data and real data from the smart card riderships of the Quebec Metro network. It includes a basis of events and disturbances that have impacted the transport network. The experiments show the relevance of variance normalization on prediction residuals to build a robust anomaly score under a dynamic context.
引用
收藏
页码:1483 / 1507
页数:25
相关论文
共 50 条
  • [41] AURORA: A Unified fRamework fOR Anomaly detection on multivariate time series
    Zhang, Lin
    Zhang, Wenyu
    McNeil, Maxwell J.
    Chengwang, Nachuan
    Matteson, David S.
    Bogdanov, Petko
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (05) : 1882 - 1905
  • [42] Conditional normalizing flow for multivariate time series anomaly detection
    Guan, Siwei
    He, Zhiwei
    Ma, Shenhui
    Gao, Mingyu
    ISA TRANSACTIONS, 2023, 143 : 231 - 243
  • [43] AURORA: A Unified fRamework fOR Anomaly detection on multivariate time series
    Lin Zhang
    Wenyu Zhang
    Maxwell J. McNeil
    Nachuan Chengwang
    David S. Matteson
    Petko Bogdanov
    Data Mining and Knowledge Discovery, 2021, 35 : 1882 - 1905
  • [44] Combining Transformer with a Discriminator for Anomaly Detection in Multivariate Time Series
    Maru, Chihiro
    Brandherm, Boris
    Kobayashi, Ichiro
    2022 JOINT 12TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 23RD INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS&ISIS), 2022,
  • [45] SUPERVISED TIME SERIES CLASSIFICATION FOR ANOMALY DETECTION IN SUBSEA ENGINEERING
    Cokaj, Ergys
    Gustad, Halvor Snersrud
    Leone, Andrea
    Moe, Per thomas
    Moldestad, Lasse
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2024, : 376 - 408
  • [46] Coupled Attention Networks for Multivariate Time Series Anomaly Detection
    Xia, Feng
    Chen, Xin
    Yu, Shuo
    Hou, Mingliang
    Liu, Mujie
    You, Linlin
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2024, 12 (01) : 240 - 253
  • [47] Label-Free Multivariate Time Series Anomaly Detection
    Zhou, Qihang
    He, Shibo
    Liu, Haoyu
    Chen, Jiming
    Meng, Wenchao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (07) : 3166 - 3179
  • [48] Benchmarking Anomaly Detection Methods: Insights From the UCR Time Series Anomaly Archive
    Baldan, Francisco J.
    Garcia-Gil, Diego
    EXPERT SYSTEMS, 2025, 42 (02)
  • [49] DUMA: Dual Mask for Multivariate Time Series Anomaly Detection
    Pan, Jinwei
    Ji, Wendi
    Zhong, Bo
    Wang, Pengfei
    Wang, Xiaoling
    Chen, Jin
    IEEE SENSORS JOURNAL, 2023, 23 (03) : 2433 - 2442
  • [50] Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
    Su, Ya
    Zhao, Youjian
    Niu, Chenhao
    Liu, Rong
    Sun, Wei
    Pei, Dan
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2828 - 2837