Minimax Redundancy for Large Alphabets

被引:5
作者
Szpankowski, Wojciech [1 ]
Weinberger, Marcelo J. [2 ]
机构
[1] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
[2] Hewlett Packard Labs, Palo Alto, CA 94304 USA
来源
2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY | 2010年
关键词
UNKNOWN ALPHABETS; DATA-COMPRESSION; UNIVERSAL; PREDICTION; REGRET;
D O I
10.1109/ISIT.2010.5513572
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the minimax redundancy of universal coding for large alphabets over memoryless sources and present two main results: We first complete studies initiated in Orlitsky and Santhanam [11] deriving precise asymptotics of the minimax redundancy for all ranges of the alphabet sizes. Second, we consider the minimax redundancy of a source model in which some symbol probabilities are fixed. The latter model leads to an interesting binomial sum asymptotics with super-exponential growth functions. Our findings could be used to approximate numerically the minimax redundancy for various ranges of the sequence length and the alphabet size. These results are obtained by analytic techniques such as tree-like generating functions and the saddle point method.
引用
收藏
页码:1488 / 1492
页数:5
相关论文
共 19 条
[1]   Coding on Countably Infinite Alphabets [J].
Boucheron, Stephane ;
Garivier, Aurelien ;
Gassiat, Elisabeth .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (01) :358-373
[2]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[3]   UNIVERSAL NOISELESS CODING [J].
DAVISSON, LD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (06) :783-795
[4]   Precise minimax redundancy and regret [J].
Drmota, M ;
Szpankowski, W .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (11) :2686-2707
[5]   Analytic variations on redundancy rates of renewal processes [J].
Flajolet, P ;
Szpankowski, W .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (11) :2911-2921
[6]   Singularity analysis and asymptotics of Bernoulli sums [J].
Flajolet, P .
THEORETICAL COMPUTER SCIENCE, 1999, 215 (1-2) :371-381
[7]  
Flajolet P., 2008, Analytic Combinatorics
[8]   ON UNIVERSAL NOISELESS SOURCE-CODING FOR INFINITE SOURCE ALPHABETS [J].
GYORFI, L ;
PALI, I ;
VANDERMEULEN, EC .
EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 1993, 4 (02) :125-132
[9]   Entropy computations via analytic depoissonization [J].
Jacquet, P ;
Szpankowski, W .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1072-1081
[10]   UNIFIED APPROACH TO WEAK UNIVERSAL SOURCE CODING [J].
KIEFFER, JC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (06) :674-682