Riemann zeta stochastic process

被引:2
作者
Ehm, Werner [1 ]
机构
[1] Inst Frontier Areas Psychol & Mental Hlth, D-79078 Freiburg, Germany
关键词
D O I
10.1016/j.crma.2007.07.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well-known that for every sigma > 1 the function t -> zeta(sigma + it)/zeta(sigma) represents the characteristic function of an infinitely divisible probability distribution. The purpose of this Note is to present a construction of a stochastic process having these distributions as its marginals. Functional limit theorems for this 'zeta process' and other related processes are also indicated.
引用
收藏
页码:279 / 282
页数:4
相关论文
共 8 条
[1]   A STOCHASTIC INTERPRETATION OF THE RIEMANN ZETA FUNCTION [J].
ALEXANDER, KS ;
BACLAWSKI, K ;
ROTA, GC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (02) :697-699
[2]   Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions [J].
Biane, P ;
Pitman, J ;
Yor, M .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 38 (04) :435-465
[3]   MARTINGALE CONVERGENCE TO INFINITELY DIVISIBLE LAWS WITH FINITE VARIANCES [J].
BROWN, BM ;
EAGLESON, GK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 162 (NDEC) :449-&
[4]  
EHM W, 2001, CONT MATH, V287, P63
[5]   On the Gaussian law of errors in the theory of additive functions [J].
Erdos, P ;
Kac, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1939, 25 :206-207
[6]  
GNEDENKO BV, 1956, LIMIT DISTRIBUTIONS
[7]  
Gut Allan, 2006, Rev. Roumaine Math. Pures Appl., V51, P205
[8]   The Riemann zeta distribution [J].
Lin, GD ;
Hu, CY .
BERNOULLI, 2001, 7 (05) :817-828