Convergence of V- and F-cycle multigrid methods for the biharmonic problem using the Hsieh-Clough-Tocher element

被引:6
作者
Zhao, J [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
multigrid; nonconforming; V-cycle; F-cycle; biharmonic problem; H-C-T element;
D O I
10.1002/num.20048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multigrid V- and F-cycle algorithms for the biharmonic problem using the H-C-T element are studied in the article. We show that the contraction numbers can be uniformly improved by increasing the number of smoothing steps. (c) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:451 / 471
页数:21
相关论文
共 27 条
[1]  
Adams R., 1975, Sobolev space
[2]  
BACUTA C., 2002, Recent Progress in Computational and Applied PDEs, P1
[3]   SHARP ESTIMATES FOR MULTIGRID RATES OF CONVERGENCE WITH GENERAL SMOOTHING AND ACCELERATION [J].
BANK, RE ;
DOUGLAS, CC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (04) :617-633
[4]  
BANK RE, 1981, MATH COMPUT, V36, P35, DOI 10.1090/S0025-5718-1981-0595040-2
[5]  
Bramble James H, 1993, MULTIGRID METHODS
[6]   MULTIGRID METHODS FOR THE BIHARMONIC PROBLEM DISCRETIZED BY CONFORMING C-1 FINITE-ELEMENTS ON NONNESTED MESHES [J].
BRAMBLE, JH ;
ZHANG, XJ .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1995, 16 (7-8) :835-846
[7]   SOME ESTIMATES FOR A WEIGHTED L2 PROJECTION [J].
BRAMBLE, JH ;
XU, JC .
MATHEMATICS OF COMPUTATION, 1991, 56 (194) :463-476
[8]   THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS [J].
BRAMBLE, JH ;
PASCIAK, JE .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :467-488
[9]  
Bramble JH, 2000, HDBK NUM AN, V7, P173
[10]  
Brenner S.C., 2002, MATH THEORY FINITE E