Teixeira singularities in 3D switched feedback control systems

被引:31
作者
Colombo, A. [1 ]
di Bernardo, M. [2 ,3 ]
Fossas, E. [4 ,5 ]
Jeffrey, M. R. [3 ]
机构
[1] Politecn Milan, Dept Elect & Informat, I-20133 Milan, Italy
[2] Univ Naples Federico II, Dept Syst & Comp Sci, I-80125 Naples, Italy
[3] Univ Bristol, Dept Engn Math, Appl Nonlinear Math Group, Bristol BS8 1TR, Avon, England
[4] Univ Politecn Cataluna, Inst Ind & Control Engn, E-08028 Barcelona, Spain
[5] Univ Politecn Cataluna, Dept Automat Control, E-08028 Barcelona, Spain
基金
英国工程与自然科学研究理事会;
关键词
Feedback; Filippov; Lur'e; Piecewise smooth; Two-fold; CO-DIMENSION-2 GRAZING BIFURCATIONS; IMPACT; STABILITY; DYNAMICS;
D O I
10.1016/j.sysconle.2010.07.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the analysis of a singularity that can occur in three-dimensional discontinuous feedback control systems. The singularity is the two-fold - a tangency of orbits to both sides of a switching manifold. Particular attention is placed on the Teixeira singularity, which previous literature suggests as a mechanism for dynamical transitions in this class of systems. We show that such a singularity cannot occur in classical single-input single-output systems in the Lur'e form. Iris, however, a potentially dangerous phenomenon in multiple-input multiple-output switched control systems. The theoretical derivation is illustrated by means of a representative example. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:615 / 622
页数:8
相关论文
共 29 条
[21]   One-parameter bifurcations in planar filippov systems [J].
Kuznetsov, YA ;
Rinaldi, S ;
Gragnani, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (08) :2157-2188
[22]  
Liberzon D., 2003, SYS CON FDN, P190, DOI 10.1007/978-1-4612-0017-8
[23]   GENERIC BIFURCATION OF SLIDING VECTOR-FIELDS [J].
TEIXEIRA, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 176 (02) :436-457
[24]   STABILITY CONDITIONS FOR DISCONTINUOUS VECTOR-FIELDS [J].
TEIXEIRA, MA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 88 (01) :15-29
[25]   ON TOPOLOGICAL STABILITY OF DIVERGENT DIAGRAMS OF FOLDS [J].
TEIXEIRA, MA .
MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (03) :361-371
[26]   Co-dimension-two grazing bifurcations in single-degree-of-freedom impact oscillators [J].
Thota, Phanikrishna ;
Zhao, Xiaopeng ;
Dankowicz, Harry .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2006, 1 (04) :328-335
[27]   VARIABLE STRUCTURE SYSTEMS WITH SLIDING MODES [J].
UTKIN, VI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (02) :212-222
[28]  
UTKIN VI, 2000, ADV VARIABLE STRUCTU, P1
[29]  
Visioli A, 2006, ADV IND CONTROL, P1