Teixeira singularities in 3D switched feedback control systems

被引:31
作者
Colombo, A. [1 ]
di Bernardo, M. [2 ,3 ]
Fossas, E. [4 ,5 ]
Jeffrey, M. R. [3 ]
机构
[1] Politecn Milan, Dept Elect & Informat, I-20133 Milan, Italy
[2] Univ Naples Federico II, Dept Syst & Comp Sci, I-80125 Naples, Italy
[3] Univ Bristol, Dept Engn Math, Appl Nonlinear Math Group, Bristol BS8 1TR, Avon, England
[4] Univ Politecn Cataluna, Inst Ind & Control Engn, E-08028 Barcelona, Spain
[5] Univ Politecn Cataluna, Dept Automat Control, E-08028 Barcelona, Spain
基金
英国工程与自然科学研究理事会;
关键词
Feedback; Filippov; Lur'e; Piecewise smooth; Two-fold; CO-DIMENSION-2 GRAZING BIFURCATIONS; IMPACT; STABILITY; DYNAMICS;
D O I
10.1016/j.sysconle.2010.07.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the analysis of a singularity that can occur in three-dimensional discontinuous feedback control systems. The singularity is the two-fold - a tangency of orbits to both sides of a switching manifold. Particular attention is placed on the Teixeira singularity, which previous literature suggests as a mechanism for dynamical transitions in this class of systems. We show that such a singularity cannot occur in classical single-input single-output systems in the Lur'e form. Iris, however, a potentially dangerous phenomenon in multiple-input multiple-output switched control systems. The theoretical derivation is illustrated by means of a representative example. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:615 / 622
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 1988, Differential Equations with Discontinuous Righthand Sides
[2]   BIFURCATION ANALYSIS OF AN IMPACT MODEL FOR FOREST FIRE PREDICTION [J].
Bizzarri, Federico ;
Storace, Marco ;
Colombo, Alessandro .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (08) :2275-2288
[3]  
Brogliato B, 1999, Nonsmooth Mechanics: Models, Dynamics and Control, V2nd
[4]  
BROGLIATO B, 2000, LECT NOTES PHYS, V5551
[5]   Discontinuity geometry for an impact oscillator [J].
Chillingworth, DRJ .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2002, 17 (04) :389-420
[6]   Complex dynamics in a hysteretic relay feedback system with delay [J].
Colombo, A. ;
di Bernardo, M. ;
Hogan, S. J. ;
Kowalczyk, P. .
JOURNAL OF NONLINEAR SCIENCE, 2007, 17 (02) :85-108
[7]   Two-Parameter Bifurcation Analysis of the Buck Converter [J].
Colombo, Alessandro ;
Lamiani, Paola ;
Benadero, Luis ;
di Bernardo, Mario .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (04) :1507-1522
[8]   Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators [J].
Dankowicz, H ;
Zhao, XP .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 202 (3-4) :238-257
[9]   Qualitative simulation of genetic regulatory networks using piecewise-linear models [J].
De Jong, H ;
Gouzé, JL ;
Hernandez, C ;
Page, M ;
Sari, T ;
Geiselmann, J .
BULLETIN OF MATHEMATICAL BIOLOGY, 2004, 66 (02) :301-340
[10]   Border collision bifurcations in the evolution of mutualistic interactions [J].
Dercole, F .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (07) :2179-2190