ITERATIVE FIXED POINT THEOREMS AND THEIR APPLICATIONS TO ORDERED VARIATIONAL INEQUALITIES ON VECTOR LATTICES

被引:0
作者
Li, Jinlu [1 ]
机构
[1] Shawnee State Univ, Dept Math, Portsmouth, OH 45662 USA
来源
FIXED POINT THEORY | 2016年 / 17卷 / 02期
关键词
Vector lattice; order-continuity; ordered Lipschitz condition; order preserving map; fixed point; generalized Archimedean vector lattice; ordered variational inequality;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concept of order-continuity and ordered Lipschitz conditions of maps on vector lattices, and we provide some properties of order-continuous maps. Then, by applying these properties, we prove some theorems for the existence of fixed points for maps. As applications of these results, we solve some ordered variational inequalities on vector lattices.
引用
收藏
页码:401 / 411
页数:11
相关论文
共 50 条
[31]   An iterative approximation scheme for solving a split generalized equilibrium, variational inequalities and fixed point problems [J].
Sitthithakerngkiet, Kanokwan ;
Deepho, Jitsupa ;
Martinez-Moreno, Juan ;
Kumam, Poom .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (12) :2373-2395
[32]   Fixed point theorems in Boolean vector spaces [J].
Rao, D. P. R. V. Subba ;
Pant, Rajendra .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) :5383-5387
[33]   Common fixed point theorems and minimax inequalities in locally convex Hausdorff topological vector spaces [J].
Agarwal, Ravi P. ;
Balaj, Mircea ;
O'Regan, Donal .
APPLICABLE ANALYSIS, 2009, 88 (12) :1691-1699
[34]   Fixed point theorems in modular vector spaces [J].
Abdou, Afrah A. N. ;
Khamsi, Mohamed A. .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08) :4046-4057
[35]   Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations [J].
Mohamed Jleli ;
Vesna Čojbašić Rajić ;
Bessem Samet ;
Calogero Vetro .
Journal of Fixed Point Theory and Applications, 2012, 12 :175-192
[36]   SEVERAL FIXED POINT THEOREMS ON PARTIALLY ORDERED BANACH SPACES AND THEIR APPLICATIONS TO INTEGRAL EQUATIONS [J].
Li, Jinlu .
FIXED POINT THEORY, 2020, 21 (01) :259-270
[37]   Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations [J].
Jleli, Mohamed ;
Rajic, Vesna Cojbasic ;
Samet, Bessem ;
Vetro, Calogero .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2012, 12 (1-2) :175-192
[38]   SOME FIXED POINT THEOREMS ON ORDERED UNIFORM SPACES [J].
Altun, Ishak ;
Imdad, Mohammad .
FILOMAT, 2009, 23 (03) :15-22
[39]   Convergence analysis of a hybrid Mann iterative scheme with perturbed mapping for variational inequalities and fixed point problems [J].
Ceng, Lu-Chuan ;
Yao, Jen-Chih .
OPTIMIZATION, 2010, 59 (06) :929-944
[40]   COMPOSITE VISCOSITY ITERATIVE METHODS FOR GENERAL SYSTEMS OF VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEM IN HILBERT SPACES [J].
Alofi, A. S. M. ;
Latif, A. ;
Al-Mazrooei, A. E. ;
Yao, J. C. .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (04) :669-682