EXACTLY SOLVABLE INTERPOLATING HAMILTONIANS WITH POSITION-DEPENDENT MASS

被引:0
|
作者
Jana, T. K. [1 ]
Roy, P. [2 ]
机构
[1] RS Mahavidyalaya, Dept Math, Ghatal 721212, India
[2] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700108, India
关键词
Interpolating; position-dependent mass; shape invariance; QUANTUM-MECHANICS; SHAPE INVARIANCE; SYSTEMS; SUPERSYMMETRY;
D O I
10.1142/S0217732310033645
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is shown that Hamiltonians of the form H(s) = (1 - s)H + sH(broken vertical bar), 0 <= s <= 1 where H-+/- are supersymmetric partner Hamiltonians corresponding to position-dependent mass Schrodinger equations are exactly solvable for a number of deformed shape-invariant potentials. The method has also been extended to a system with broken supersymmetry.
引用
收藏
页码:2915 / 2922
页数:8
相关论文
共 50 条
  • [1] Deformed shape invariance and exactly solvable Hamiltonians with position-dependent effective mass
    Bagchi, B
    Banerjee, A
    Quesne, C
    Tkachuk, VM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (13): : 2929 - 2945
  • [2] QUASI-EXACTLY SOLVABLE POTENTIALS FOR A PARTICLE WITH A POSITION-DEPENDENT MASS
    Voznyak, O.
    Tkachuk, V. M.
    JOURNAL OF PHYSICAL STUDIES, 2012, 16 (1-2):
  • [3] Exactly solvable schrodinger equations with a position-dependent mass:: Null potential
    Pena, J. J.
    Ovando, G.
    Morales, J.
    Garcia-Ravelo, J.
    Pacheco-Garcia, C.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2007, 107 (15) : 3039 - 3045
  • [4] Exactly solvable position-dependent mass Hamiltonians related to non-compact semi-simple Lie groups
    Kerimov, G. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (44)
  • [5] An exactly solvable Schrodinger equation with finite positive position-dependent effective mass
    Levai, G.
    Ozer, O.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [6] A new class of quasi-exactly solvable potentials with a position-dependent mass
    Koç, R
    Koca, M
    Körcük, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (35): : L527 - L530
  • [7] Exceptional orthogonal polynomials and exactly solvable potentials in position dependent mass Schrodinger Hamiltonians
    Midya, B.
    Roy, B.
    PHYSICS LETTERS A, 2009, 373 (45) : 4117 - 4122
  • [8] QUASI-EXACTLY SOLVABLE PERIODIC POTENTIALS FOR THE PARTICLE WITH THE PERIODIC POSITION-DEPENDENT MASS
    Voznyak, O.
    JOURNAL OF PHYSICAL STUDIES, 2014, 18 (01):
  • [9] Relativistic confinement of neutral fermions with partially exactly solvable and exactly solvable PT-Symmetric potentials in the presence of position-dependent mass
    Jia, Chun-Sheng
    Wang, Ping-Quan
    Liu, Jian-Yi
    He, Su
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (10) : 2513 - 2522
  • [10] Relativistic Confinement of Neutral Fermions with Partially Exactly Solvable and Exactly Solvable PT-Symmetric Potentials in the Presence of Position-Dependent Mass
    Chun-Sheng Jia
    Ping-Quan Wang
    Jian-Yi Liu
    Su He
    International Journal of Theoretical Physics, 2008, 47 : 2513 - 2522