Angular Derivatives for Holomorphic Self-Maps of the Disk

被引:10
作者
Becker, Jochen [1 ]
Pommerenke, Christian [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Berlin, Germany
关键词
Bounded function; Angular limit; Angular derivative; Quadratic form; Isogonality;
D O I
10.1007/s40315-017-0199-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let the function phi be holomorphic in the unit disk D and let phi(D) subset of D. We consider points zeta is an element of partial derivative D where phi has an angular limit phi(zeta) is an element of partial derivative D and study the behaviour of (phi(z)) - phi(zeta))/(z-zeta) as z tends to zeta in various ways. In particular, there is a result connecting vertical bar psi'(zeta(upsilon))vertical bar and vertical bar psi(zeta(mu)) - psi(zeta(upsilon))vertical bar for three points zeta(upsilon) . Expressed as a positive semidefinite quadratic form, this result could, perhaps, be generalized to n points zeta(upsilon) .
引用
收藏
页码:487 / 497
页数:11
相关论文
共 16 条
[1]  
AHERN PR, 1974, MICH MATH J, V21, P115
[2]  
ANDERSON JM, 1974, J REINE ANGEW MATH, V270, P12
[3]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[4]   On the images of horodisks under holomorphic self-maps of the unit disk [J].
Betsakos, Dimitrios .
ARCHIV DER MATHEMATIK, 2014, 102 (01) :91-99
[5]   Inequalities for angular derivatives and boundary interpolation [J].
Bolotnikov, Vladimir ;
Elin, Mark ;
Shoikhet, David .
ANALYSIS AND MATHEMATICAL PHYSICS, 2013, 3 (01) :63-96
[6]   ANGULAR AND TANGENTIAL LIMITS OF BLASCHKE PRODUCTS AND THEIR SUCCESSIVE DERIVATIVES [J].
CARGO, GT .
CANADIAN JOURNAL OF MATHEMATICS, 1962, 14 (02) :334-&
[7]  
Contreras M. D., 2007, COMPLEX VAR ELLIPTIC, V52, P685, DOI [10.1080/17476930701349828, DOI 10.1080/17476930701349828]
[8]   Analytic flows on the unit disk:: Angular derivatives and boundary fixed points [J].
Contreras, MD ;
Díaz-Madrigal, S .
PACIFIC JOURNAL OF MATHEMATICS, 2005, 222 (02) :253-286
[9]  
Cowen C., 1995, Composition operators on spaces of analytic functions
[10]  
COWEN CC, 1982, J LOND MATH SOC, V26, P271