Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials

被引:110
作者
Schmitt, Jennifer [1 ]
Gibbs, Zachary M. [2 ]
Snyder, G. Jeffrey [3 ]
Felser, Claudia [4 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Inorgan & Analyt Chem, D-55099 Mainz, Germany
[2] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[3] CALTECH, Dept Mat Sci, Pasadena, CA 91125 USA
[4] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
关键词
N-TYPE; TRANSPORT; TINISN; SUBSTITUTION; STABILITY; FIGURE; MERIT;
D O I
10.1039/c4mh00142g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
N-type XNiSn (X = Ti, Zr, Hf) half-Heusler (HH) compounds possess excellent thermoelectric properties, which are believed to be attributed to their relatively high mobility. However, p-type XNiSn HH compounds have poor figures of merit, zT, compared to XCoSb compounds. This can be traced to the suppression of the magnitude of the thermopower at high temperatures. E-g = 2eS(max)T(max) relates the band gap to the thermopower peak. However, from this formula, one would conclude that the band gap of p-type XNiSn solid solutions is only one-third that of n-type XNiSn, which effectively prevents p-type XNiSn HHs from being useful thermoelectric materials. The study of p-type HH Zr1-xScxNiSn solid solutions show that the large mobility difference between electrons and holes in XNiSn results in a significant correction to the Goldsmid-Sharp formula. This finding explains the difference in the thermopower band gap between n-type and p-type HH. The high electron-to-hole weighted mobility ratio leads to an effective suppression of the bipolar effect in the thermoelectric transport properties which is essential for high zT values in n-type XNiSn (X = Ti, Zr, Hf) HH compounds.
引用
收藏
页码:68 / 75
页数:8
相关论文
共 57 条
[1]   NARROW-BAND IN THE INTERMETALLIC COMPOUNDS TINISN, ZRNISN, HFNISN [J].
ALIEV, FG ;
KOZYRKOV, VV ;
MOSHCHALKOV, VV ;
SCOLOZDRA, RV ;
DURCZEWSKI, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1990, 80 (03) :353-357
[2]   GAP AT THE FERMI LEVEL IN THE INTERMETALLIC VACANCY SYSTEM TINISN, ZRNISN, HFNISN [J].
ALIEV, FG ;
BRANDT, NB ;
MOSHCHALKOV, VV ;
KOZYRKOV, VV ;
SKOLOZDRA, RV ;
BELOGOROKHOV, AI .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 75 (02) :167-171
[3]  
[Anonymous], [No title captured]
[4]   Measurement of the electrical resistivity and Hall coefficient at high temperatures [J].
Borup, Kasper A. ;
Toberer, Eric S. ;
Zoltan, Leslie D. ;
Nakatsukasa, George ;
Errico, Michael ;
Fleurial, Jean-Pierre ;
Iversen, Bo B. ;
Snyder, G. Jeffrey .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (12)
[5]   Doping of p-type ZnSb: Single parabolic band model and impurity band conduction [J].
Bottger, P. H. Michael ;
Pomrehn, Gregory S. ;
Snyder, G. Jeffrey ;
Finstad, Terje G. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (12) :2753-2759
[6]   Recent progress of half-Heusler for moderate temperature thermoelectric applications [J].
Chen, Shuo ;
Ren, Zhifeng .
MATERIALS TODAY, 2013, 16 (10) :387-395
[7]   (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700 °C) p-type thermoelectric materials [J].
Culp, Slade R. ;
Simonson, J. W. ;
Poon, S. Joseph ;
Ponnambalam, V. ;
Edwards, J. ;
Tritt, Terry M. .
APPLIED PHYSICS LETTERS, 2008, 93 (02)
[8]   Electronic structure of Zr-Ni-Sn systems: role of clustering and nanostructures in half-Heusler and Heusler limits [J].
Do, Dat T. ;
Mahanti, S. D. ;
Pulikkoti, Jiji J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (27)
[9]   High Band Degeneracy Contributes to High Thermoelectric Performance in p-Type Half-Heusler Compounds [J].
Fu, Chenguang ;
Zhu, Tiejun ;
Pei, Yanzhong ;
Xie, Hanhui ;
Wang, Heng ;
Snyder, G. Jeffrey ;
Liu, Yong ;
Liu, Yintu ;
Zhao, Xinbing .
ADVANCED ENERGY MATERIALS, 2014, 4 (18)
[10]   Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy [J].
Gibbs, Zachary M. ;
LaLonde, Aaron ;
Snyder, G. Jeffrey .
NEW JOURNAL OF PHYSICS, 2013, 15