Defect characterization in graphene and carbon nanotubes using Raman spectroscopy

被引:653
作者
Dresselhaus, M. S. [1 ,2 ]
Jorio, A. [3 ]
Souza Filho, A. G. [4 ]
Saito, R. [5 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[4] Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil
[5] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2010年 / 368卷 / 1932期
关键词
graphene; nanographite; carbon nanotubes; Raman spectroscopy; defects; D-BAND; SCATTERING; GRAPHITE; SPECTRUM; DIAMOND; ORDER; EDGES;
D O I
10.1098/rsta.2010.0213
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This review discusses advances that have been made in the study of defect-induced double-resonance processes in nanographite, graphene and carbon nanotubes, mostly coming from combining Raman spectroscopic experiments with microscopy studies and from the development of new theoretical models. The disorder-induced peak frequencies and intensities are discussed, with particular emphasis given to how the disorder-induced features evolve with increasing amounts of disorder. We address here two systems, ion-bombarded graphene and nanographite, where disorder is represented by point defects and boundaries, respectively. Raman spectroscopy is used to study the 'atomic structure' of the defect, making it possible, for example, to distinguish between zigzag and armchair edges, based on selection rules of phonon scattering. Finally, a different concept is discussed, involving the effect that defects have on the lineshape of Raman-allowed peaks, owing to local electron and phonon energy renormalization. Such effects can be observed by near-field optical measurements on the G' feature for doped single-walled carbon nanotubes.
引用
收藏
页码:5355 / 5377
页数:23
相关论文
共 66 条
[1]  
[Anonymous], 1992, SPRINGER SERIES MAT
[2]  
ASHCROFT NW, 1976, SOLID STATE PHYS, P141
[3]  
BARANOV AV, 1987, OPT SPEKTROSK+, V62, P1036
[4]   Raman spectroscopy of graphitic foams [J].
Barros, EB ;
Demir, NS ;
Souza, AG ;
Mendes, J ;
Jorio, A ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 2005, 71 (16)
[5]   Theory of resonant multiphonon Raman scattering in graphene [J].
Basko, D. M. .
PHYSICAL REVIEW B, 2008, 78 (12)
[6]   Observations of the D-band feature in the Raman spectra of carbon nanotubes -: art. no. 073403 [J].
Brown, SDM ;
Jorio, A ;
Dresselhaus, MS ;
Dresselhaus, G .
PHYSICAL REVIEW B, 2001, 64 (07)
[7]   Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size [J].
Cancado, L. G. ;
Jorio, A. ;
Pimenta, M. A. .
PHYSICAL REVIEW B, 2007, 76 (06)
[8]   Measuring the degree of stacking order in graphite by Raman spectroscopy [J].
Cancado, L. G. ;
Takai, K. ;
Enoki, T. ;
Endo, M. ;
Kim, Y. A. ;
Mizusaki, H. ;
Speziali, N. L. ;
Jorio, A. ;
Pimenta, M. A. .
CARBON, 2008, 46 (02) :272-275
[9]   Influence of the atomic structure on the Raman spectra of graphite edges -: art. no. 247401 [J].
Cançado, LG ;
Pimenta, MA ;
Neves, BRA ;
Dantas, MSS ;
Jorio, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (24)
[10]  
CARDONA M, 1982, TOP APPL PHYS, V50, P19