Dihydroartemisinin, an Anti-Malaria Drug, Suppresses Estrogen Deficiency-Induced Osteoporosis, Osteoclast Formation, and RANKL-Induced Signaling Pathways

被引:90
|
作者
Zhou, Lin [1 ]
Liu, Qian [1 ,2 ,3 ]
Yang, Mingli [1 ]
Wang, Tao [2 ,3 ]
Yao, Jun [1 ,2 ,3 ]
Cheng, Jianwen [1 ,2 ,3 ]
Yuan, Jinbo [1 ]
Lin, Xixi [2 ,3 ]
Zhao, Jinmin [2 ,3 ]
Tickner, Jennifer [1 ]
Xu, Jiake [1 ,2 ,3 ]
机构
[1] Univ Western Australia, Sch Pathol & Lab Med, Perth, WA 6009, Australia
[2] Guangxi Med Univ, Res Ctr Regenerat Med, Guangxi, Peoples R China
[3] Guangxi Med Univ, Guangxi Key Lab Regenerat Med, Guangxi, Peoples R China
基金
英国医学研究理事会; 中国国家自然科学基金;
关键词
DIHYDROARTEMISININ; OSTEOCLAST; RANKL; BONE RESORPTION; OSTEOLYSIS; NF-KAPPA-B; REGULATED KINASE; NUCLEAR-FACTOR; BREAST-CANCER; ACTIVATION; NFATC1; CELLS; BONE; ERK; OSTEOPROTEGERIN;
D O I
10.1002/jbmr.2771
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Osteoporosis is an osteolytic disease that features enhanced osteoclast formation and bone resorption. Identification of agents that can inhibit osteoclast formation and function is important for the treatment of osteoporosis. Dihydroartemisinin is a natural compound used to treat malaria but its role in osteoporosis is not known. Here, we found that dihydroartemisinin can suppress RANKL-induced osteoclastogenesis and bone resorption in a dose-dependent manner. Dihydroartemisinin inhibited the expression of osteoclast marker genes such as cathepsin K, calcitonin receptor, and tartrate-resistant acid phosphatase (TRAcP). Furthermore, dihydroartemisinin inhibited RANKL-induced NF-kappa B and NFAT activity. In addition, using an in vivo ovariectomized mouse model, we show that dihydroartemisinin is able to reverse the bone loss caused by ovariectomy. Together, this study shows that dihydroartemisinin attenuates bone loss in ovariectomized mice through inhibiting RANKL-induced osteoclast formation and function. This indicates that dihydroartemisinin, the first physiology or medicine nobel prize discovery of China, is a potential treatment option against osteolytic bone disease. (C) 2015 American Society for Bone and Mineral Research.
引用
收藏
页码:964 / 974
页数:11
相关论文
共 50 条
  • [21] Inhibitory effects of eugenol on RANKL-induced osteoclast formation via attenuation of NF-κB and MAPK pathways
    Deepak, Vishwa
    Kasonga, Abe
    Kruger, Marlena C.
    Coetzee, Magdalena
    CONNECTIVE TISSUE RESEARCH, 2015, 56 (03) : 195 - 203
  • [22] PP121 suppresses RANKL-Induced osteoclast formation in vitro and LPS-Induced bone resorption in vivo
    Zhou, Zhihang
    Chen, Xinwei
    Chen, Xuzhuo
    Qin, An
    Mao, Yi
    Pang, Yichuan
    Yu, Shiqi
    Zhang, Shanyong
    EXPERIMENTAL CELL RESEARCH, 2020, 388 (02)
  • [23] Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-κB and JNK signaling pathways
    Chen, Guiping
    Xu, Qiang
    Dai, Min
    Liu, Xuqiang
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 509 (02) : 329 - 334
  • [24] Alisol-B, a novel phyto-steroid, suppresses the RANKL-induced osteoclast formation and prevents bone loss in mice
    Lee, Ji-Won
    Kobayashi, Yasuhiro
    Nakamichi, Yuko
    Udagawa, Nobuyuki
    Takahashi, Naoyuki
    Im, Nam-Kyung
    Seo, Hwa-Jeong
    Jeon, Won Bae
    Yonezawa, Takayuki
    Cha, Byung-Yoon
    Woo, Je-Tae
    BIOCHEMICAL PHARMACOLOGY, 2010, 80 (03) : 352 - 361
  • [25] Inhibitory effect of vanillin on RANKL-induced osteoclast formation and function through activating mitochondrial-dependent apoptosis signaling pathway
    Chen, Yueqi
    Dou, Ce
    Yi, Jin
    Tang, Ruohui
    Yu, Tao
    Zhou, Lan
    Luo, Wei
    Liang, Mengmeng
    Yin, Xiaolong
    Li, Jianmei
    Kang, Fei
    Zhao, Yufeng
    Dong, Shiwu
    LIFE SCIENCES, 2018, 208 : 305 - 314
  • [26] Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-κB and Akt pathways
    Hu, Jin-Ping
    Nishishita, Kazuhisa
    Sakai, Eiko
    Yoshida, Hajime
    Kato, Yuzo
    Tsukuba, Takayuki
    Okamoto, Kuniaki
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2008, 580 (1-2) : 70 - 79
  • [27] Eleutherococcus senticosus Inhibits RANKL-induced osteoclast formation by attenuating the NF-κB and MAPKs signaling pathway
    Yang, Xiaobin
    Chang, Zhen
    Ma, Rui
    Guo, Hua
    Zhao, Qingpeng
    Wang, Xiaodong
    Kong, Lingbo
    Hao, Dingjun
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2017, 10 (04): : 4514 - 4521
  • [28] Trifolirhizin reduces osteoclast formation and prevents inflammatory osteolysis by inhibiting RANKL-induced activation of NF-κB and MAPK signaling pathways and ROS
    Huang, Jian
    Song, Dezhi
    Xu, Minglian
    Gan, Kai
    Wang, Chaofeng
    Chen, Liuyuan
    Huang, Qian
    Chen, Junchun
    Su, Yuangang
    Xu, Jiake
    Zhao, Jinmin
    Liu, Qian
    PHYTOTHERAPY RESEARCH, 2024, 38 (09) : 4650 - 4666
  • [29] "Betaone" barley water extract suppresses ovariectomy-induced osteoporosis in vivo and RANKL-induced osteoclast differentiation in vitro
    Lee, Yongjin
    Lee, Hyun-Jin
    Kim, Kwang-Jin
    Shin, Han-Byeol
    Shin, Yoon-A
    Jin, Holim
    Ham, Ju Ri
    Choi, Soo-Young
    Lee, Mi-Ja
    Lee, Mi-Kyung
    Son, Young-Jin
    PLOS ONE, 2025, 20 (02):
  • [30] Artemisinic acid attenuates osteoclast formation and titanium particle-induced osteolysis via inhibition of RANKL-induced ROS accumulation and MAPK and NF-κB signaling pathways
    Gao, Tian
    Yu, Chaohong
    Shi, Xiaofeng
    Hu, Yuehao
    Chang, Yongyun
    Zhang, Jingwei
    Wang, Yitian
    Zhai, Zanjing
    Jia, Xinlin
    Mao, Yuanqing
    FRONTIERS IN PHARMACOLOGY, 2024, 15